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METHODS

1. CHOICE OF SUBDUCTION ZONES

A total of 24 mature subduction zones were investigated (see Table S1 for the complete list).
All subduction zones incorporated in the study show Wadati-Benioff zone seismicity down to
a depth that exceeds 150 km, except Cascadia, Makran, Mexico and South Shetland. Some
subduction zones have a poorly developed or relatively short seismic slab (Betic-Rif,
Cascadia, Halmahera, Hellenic, Lesser Antilles-Puerto Rico, Manila, Makran, Mexico, parts
of South America, South Shetland, Trobriand, Venezuela). For all these slabs except South
Shetland a distinct and longer slab geometry has been imaged in tomography models (van der
Hilst and Mann, 1994; Bostock and VanDecar, 1995; Bijwaard et al., 1998; Wortel and
Spakman, 2000; Gutscher et al., 2002; Hall and Spakman, 2002; VanDecar et al., 2003). Also,
all subduction zones have a well-defined trench morphology, except Betic-Rif, Calabria,
Cyprus and Hellenic.

Incipient subduction zones (fourteen in total) were not taken into account in the
calculations. All incipient subduction zones show Wadati-Benioff zone seismicity to a depth
not exceeding ~150 km (except maybe Philippine) and formed not earlier than 5 Myr ago.
Incipient subduction zones are not yet self-sustaining (Gurnis et al., 2004; Schellart, 2005),
because the negative buoyancy force of the short slab is small. Subduction is essentially
passive and results predominantly from the motion of the surrounding plates and microplates.

2. REFERENCE FRAME DEPENDENT PARAMETERS

2.1. Calculating overriding plate, subducting plate and trench velocity
The major overriding plates and subducting plates (and potential microplates) that were used
to calculate the trench-perpendicular overriding plate velocity (vOP⊥) and trench-perpendicular
subducting plate velocity (vSP⊥) for each subduction zone are listed in Table S1. The trench-
perpendicular trench migration velocity vT⊥ was calculated from summation of the overriding
plate velocity (+ a potential microplate), the rate of arc/backarc deformation and the rate of
accretion/erosion (vT⊥ = vOP⊥ + vOPD⊥ + vA⊥). More details on calculating vT⊥ can be found in
Schellart et al. (2007, 2008). The velocities vOP⊥, vSP⊥ and vT⊥ are particularly dependent on the
choice of reference frame. For this reason, calculations were done in seven reference frames
to get an understanding of how much the rates are dependent on the choice of reference frame
and to investigate if, despite differences, one can still extract common patterns that might be
present in different reference frames. The reference frames used were the Indo-Atlantic hot
spot reference frame (O’Neill et al., 2005), a global hotspot reference frame (Gordon and
Jurdy, 1986), the Pacific hotspot reference frames of Wessel et al. (2006) and Gripp and
Gordon (2002), the no-net-rotation reference frames of Argus and Gordon (1991) and
Kreemer et al. (2003) and the Antarctic plate reference frame of Hamilton (2003). The
velocities are only slightly dependent on the choice of relative plate motion model, where
calculations in the geophysical relative plate motion model of DeMets et al. (1990) and
DeMets et al. (1994) are very similar to the ones in the geodetic relative plate motion model
from Kreemer et al. (2003). All reference frames were combined with the model from
DeMets et al. (1994) and Kreemer et al. (2003), except the no-net-rotation reference frames
and the global hotspot reference frame.
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In the hotspot reference frames, plate motion relative to the hotspots is averaged for the
last 10 Myr (Gordon and Jurdy, 1986; O’Neill et al., 2005), 5.8 Myr (Gripp and Gordon,
2002) and 5.89 Myr (Wessel et al., 2006), while in the no-net-rotation reference frames plate
motions are averaged for the last 3 Myr (Argus and Gordon, 1991) or represent current plate
motions (Kreemer et al., 2003). The relative plate motion model from DeMets et al. (1994) is
averaged for the last 3 Myr.

3. REFERENCE FRAME INDEPENDENT PARAMETERS

3.1. Calculating overriding plate deformation rate
The trench-perpendicular overriding plate deformation rate (vOPD⊥) was mostly calculated
from published rotation parameters for the motion of arc blocks with respect to the main
overriding plate (or potential microplate). In some cases only average extension or shortening
rates of the backarc/arc region were available. The plates, microplates and arc blocks used in
the study are listed in Table S2.

The component of overriding plate trench-perpendicular deformation was compiled from
previous investigations, in which such rates were determined mainly from geodetic
investigations but also from geological or geophysical investigations (Table S1). In the
geodetic data set 24 out of 28 vOPD⊥ are based on geodetics, while the remaining 4 are based
on geology/geophysics. In the geological data set 15 out of 28 vOPD⊥ are based on
geology/geophysics, while the remaining 13 are based on geodetics. Thus, the geodetic data
set for vOPD⊥ rates is most complete. Most geodetic rates are often comparable with rates
determined from geological and geophysical investigations. The most important exception is
for the Calabrian subduction zone, where geodetic investigations imply a current extensional
rate in the overriding plate of only 0.2 cm/yr (Serpelloni et al., 2005), while geological
investigations imply an average of 6 cm/yr for the last 4 Myr (Rosenbaum et al., 2004). Other
less profound exceptions are the Betic-Rif subduction zone, South Shetland subduction zone
and the Cascadia subduction zone (see Table S1). For four subduction zones only estimates
based on geology/geophysics are available. For one (Andaman), quantification of the
deformation rate is based on tectonic reconstructions. For the remaining three (Mexico,
Kamchatka, Izu-Bonin), the deformation rates are determined from geological investigations,
but the deformation rates are so low (< 0.2 cm/yr) that inclusion of the rates hardly affects
trends observed in the diagrams.

Positive velocities of overriding plate deformation point to extension (i.e. backarc/intra-arc
extension or backarc spreading). Negative velocities point to overriding plate shortening. For
most subduction zones the overriding plate close to the trench is either extending or neutral.
Very high trench-perpendicular backarc opening rates (6 – 15 cm/yr) are found behind the
Tonga, New Hebrides, New Britain and Scotia arcs. Significant trench-perpendicular
overriding plate shortening is only observed in Central South America, Japan and southern
Manila with comparatively low rates (-3 – 0 cm/yr).

3.2. Calculating slab width and lateral slab edge distance
Slab width was calculated for all the major subduction zones on Earth. The width was
calculated primarily from the plate tectonic model of Bird (2003), in which the width of the
subduction zone plate boundary (i.e. the trench-parallel extent of the boundary) serves as a
proxy for the slab width. All subduction zones have a well-defined trench morphology, except
the Betic-Rif, Calabria, Cyprus and Hellenic subduction zones. Slab edge distance (DSE) is the
distance of the centre of a trench segment to its closest lateral subduction zone (slab) edge.
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A number of wide subduction systems consist of adjoining arc systems, e.g. Nankai-
Ryukyu, Tonga-Kermadec-Hikurangi, Mexico-Central America, New Britain-San Cristobal-
New Hebrides (Melanesia), Burma-Andaman-Sumatra-Java-Banda (Sunda), Kamchatka-
Kuril-Japan-Izu-Bonin-Mariana (Northwest Pacific). These systems were determined to
consist of one single continuous slab, because the seismic and tomographic signature for each
subduction system implies that the slab is continuous across individual arc cusps (Isacks et
al., 1968; Yamaoka et al., 1986; Jarrard, 1986; Gudmundsson and Sambridge, 1998; Bijwaard
and Spakman, 1998; Wortel and Spakman, 2000; Kennett and Gorbatov, 2004). Obviously,
the existence of small sub-vertical slab tears, gaps and slab windows (i.e. with a horizontal
length scale < 150 km) in all the subduction zones investigated can never be ruled out, but the
limited extent will guarantee that their impact on the kinematics and dynamics of subduction
will be limited. Therefore, these subduction zones can be considered as single entities.

A number of subduction zones are connected to former subduction zones that are now
collision zones, for which a clear slab geometry is still discernable from focal mechanisms
and/or tomography. These slab segments were included in the slab width and DSE calculations.
The Sunda slab continues eastward for ~1400 km as the Banda slab, where Australia is
colliding with Timor (Bijwaard et al., 1998; Milsom, 2001) and northward for ~1250 km as
the Burma slab, where India is colliding with Eurasia (Bijwaard et al., 1998; Rao and Kalpna,
2005). The Hellenic slab continues northwestward for ~800 km as the Dinarides slab, where
the continental crust of the Adriatic promontory is colliding with Eurasia (Wortel and
Spakman, 2000). The New Britain and Trobriand slabs both continue westward for ~400 km
underneath the New Guinea collision zone (Cooper and Taylor, 1987; Hall and Spakman,
2002). The Lesser Antilles-Puerto Rico slab continues westward for ~550 km as the
Hispaniola slab, where the Bahamas block is colliding with Hispaniola (Mann et al., 2002).
The collision zones described above, including other collision zones with discernable slab
geometries such as Carpathians, Solomon and Himalayas, were not included in the
calculations.

3.3. Calculating trench-parallel ridge/plateau/continental crust distance
The trench-parallel distance from a subduction segment to the closest aseismic
ridge/plateau/continental crust intersecting the trench (DR) was calculated for all the
subduction zones. A number of subduction zones do not have any aseismic
ridge/plateau/continental crust intersecting the trench (e.g. Scotia), and these subduction
zones are therefore not included in Fig. 2L.

3.4. Calculating convergence velocity
The trench-perpendicular convergence velocity vC⊥ was calculated from the relative motion
between the major overriding plate (+ potential microplate) and the major subducting plate (+
potential microplates), thus vC⊥ = vOP⊥ + vSP⊥, where trenchward plate motion is positive. These
velocities are independent of the choice of reference frame. The velocities are only slightly
dependent on the choice of relative plate motion model, where calculations in the geophysical
relative plate motion model of DeMets et al. (1994) and DeMets et al. (1990) are very similar
to the ones in the geodetic relative plate motion model from Kreemer et al. (2003).

3.5. Calculating subduction velocity
The trench-perpendicular subduction velocity vS⊥ was calculated from the relative motion
between the major overriding plate + potential microplate + overriding plate deformation +
accretion/erosion (i.e. vT⊥) and the major subducting plate + potential microplate (i.e. vSP⊥),
thus vS⊥ = vT⊥ + vSP⊥. The subduction velocity thus represent the rate at which the subducting
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plate disappears into the mantle. The subduction velocity is independent of the choice of
reference frame. The velocities are only slightly dependent on the choice of relative plate
motion model, because calculations in the geological relative plate motion model of DeMets
et al. (1994) and DeMets et al. (1990) are very similar to the ones in the geodetic relative
plate motion model from Kreemer et al. (2003). For a number of subduction zones, the
velocities are also dependent on the overriding plate deformation model, be it the geodetic
model or the geological model. For most subduction zones which experience overriding plate
deformation the difference is small, but for some (e.g. Calabria, Scotia, South Shetland, Betic-
Rif), the difference can be several cm/yr.

3.6. Trench accretion/erosion rate
The trench accretion/erosion rate (vA⊥) for the mature subduction zones is shown in Table S1.
Rates vary between -0.5 and 0.6 cm/yr. The rates for erosion and accretion have been
obtained for a large part from the review paper by Clift and Vannucchi (2004). The most
significant tectonic erosion rates have been documented for Japan (-0.3 cm/yr), northern and
central South America (-0.3 cm/yr), Tonga (-0.4 cm/yr) and Scotia (-0.5 cm/yr). The most
significant accretion rates have been documented for southern South America (0.3 cm/yr),
Lesser Antilles (0.3 cm/yr), Hellenic (0.5 cm/yr) and Andaman (0.6 cm/yr). For a large
number of subduction zones, the rate of accretion/erosion has been determined, whilst for
some it is only inferred based on comparative geology and tectonic setting with respect to
other subduction zones for which the rate is known. For a total of 11 subduction zones, no
calculated rates or estimated rates are available yet, resulting in a reduction of data points
from 244 to 190. In particular, no data points are available for the New Britain-San Cristobal-
New Hebrides subduction zone, which is good for a total of 22 data points and which is
probably undergoing erosion along (most of) its length.

3.7. Subducting plate age
The subducting plate age (ASP) at the trench was obtained from numerous published sources
(see Table S1) and was averaged for the 200 km trench segments.

3.8. Slab dip angle
Shallow slab dip angles (θS, averaged over a depth range of 0-125 km) and deep slab dip
angles (θD, averaged over a depth range of 125-670 km) were obtained for the subduction
zones from the published literature (Yokokura, 1981; Jarrard, 1986; Yamaoka et al., 1986;
Gudmundsson and Sambridge, 1998; Lallemand et al., 2005; Reyners et al., 2006; Chatelain
et al., 1993; Lebrun et al., 2000; Kopp et al., 1999; Lallemand et al., 1998; Hall and Spakman,
2002; Abdelwahed and Zhao, 2007; Bostock and VanDecar, 1995; Ibáñez et al., 1997;
VanDecar et al., 2003; Pérez et al., 1997; Gutscher et al., 2002; Wortel and Spakman, 2000;
Papazachos et al., 2000; van Hinsbergen et al., 2005; Piromallo and Morelli, 2003; Ben-
Avraham et al., 1988; Bijwaard et al., 1998; Mann et al., 2002; Alinaghi et al., 2007), and
were averaged for the 200 km trench segments. Note that from a total of 244 subduction
segments, 227 θS and 176 θD could be obtained.

3.9. Subduction zone polarity
The subduction zone azimuth with respect to the geographical north was calculated for the
individual trench segments of each subduction zone. For more details the reader is referred to
Schellart (2007).
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Fig. S1. (Previous page and above) Diagrams illustrating the relationship between the trench-
perpendicular overriding plate velocity (vOP⊥; trenchward plate motion is taken as positive) and the
trench-perpendicular overriding plate deformation rate (vOPD⊥; extension is positive, shortening is
negative) in different global reference frames and with different relative plate motion models and
overriding plate deformation data sets, i.e. geodetic with Kreemer et al. (2003) or geological with, for
example, DeMets et al. (1994). Models in Figs. 1A-D make use of the geodetic data set, while models
in Figs. 1E-J make use of the geological data set. The models are: (A) Pacific hotspot (Gripp and
Gordon, 2002 and Kreemer et al., 2003); (B) Antarctic plate (Hamilton, 2003 and Kreemer et al.,
2003); (C) no-net-rotation (Kreemer et al., 2003); (D) Pacific hotspot (Wessel et al., 2006 and
Kreemer et al., 2003); (E) global hotspot (Gordon and Jurdy, 1986); (F) no-net-rotation (Argus and
Gordon, 1991); (G) Pacific hotspot (Gripp and Gordon, 2002 and DeMets et al., 1994); (H) Antarctic
plate (Hamilton, 2003 and DeMets et al., 1994); (I) Indo-Atlantic hotspot (O’Neill et al., 2005 and
DeMets et al., 1994); (J) Pacific hotspot (Wessel et al., 2006 and DeMets et al., 1994). Note that the
Indo-Atlantic hotspot model combined with Kreemer et al. (2003) is plotted in Fig. 1A of the paper.
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TABLES

Table S1. Subduction zone data.
Subduction system Slab

width
(km)

Subducting
plate age
ASP (Ma)

Trench ⊥
overriding
plate defor-
mation rate
vOPD⊥ (cm/yr)

Motion of arc block
with respect to
overriding plate /
microplate to calculate
vOPD⊥

Subducting plate
(+microplate) to
calculate vSP⊥

Overriding plate
(+microplate) to
calculate vOP⊥

Tectonic
accretion
(>0) or
erosion (<0)
vA⊥ (cm/yr)

Betic-Rif [Be] 450 ~155 (1) 0.44 A BE-EU (2)§ AF EU ?
Calabria [Cb] 300 >80 (3) 0.2 B CB-EU (4)§ AF EU ?
South Shetland [Sh] 450 14-23 (5) ~0.8 C SL-AN (6)§ AN AN ?
North Sulawesi [Sl] 500 42 (7,8) ~0 EU-SU (9)§ EU-SU-MS (9-11)§ ?
Halmahera [Ha] 500 ~45 (12) ~0 EU-SU-MS (11,9)§ AU-BH (10)§ ?
Cyprus [Cy] 500 >80 (3) 0 AF EU-AT (13)§ ?
Puysegur [Pu] 750 22-83 (14) 0 AU PA ?
Scotia [Sc] 800 26-82 (15) 4.9 – 9.1 D SW-SC (16)§ SA AN-SC (16)§ -0.5  (17)
Sangihe [Sa] 850 ~45 (12) ~0 EU-SU-MS (11,9)§ EU-SU (9)§ ?
Trobriand [Tr] 900 ¶ ~30 (18) 1.3 – 1.8 WL-AU (19)§ PA-SO (10)§ AU ?
Makran [Mk] 900 ~85 (20) ~ -0.6 MK-EU (21)§ AR EU 0.2  (22)
Manila [Mn] 1000 15-32 (23) -3.1 – 0.3 (LU)-PS (11)§ EU-SU (9)§ PS -0.15  (22)^
Cascadia [Cs] 1400 1-11 (24) -0.4 – 0.6 E (OR/OL/NV)-NA (25)§ JF NA 0.2  (22)
Venezuela [Ve] 1550 ~90 (26) ~0 CA SA-ND (10)* ?
Hellenic- [Hl]
(Dinarides) [Di]

1700 $ >80 (3) 0.2 – 1.2 AS-AT (13)§ AF EU-AT (13)§ 0.5  (22)

Nankai- [Na]
Ryukyu [Ry]

2250 15-29 (27)
38-131 (29)

-2.0 – -1.0
0.4 – 4.8

TK-AM (28)§

ON-YA (30)§
PS
PS

EU-AM (9)§

EU-YA (9)§
0.1  (22)
-0.3  (22)^

Lesser Antilles- [An]
Puerto Rico- [Pr]
(Hispaniola) [Hp]

2450 # 81-100 (1,31)
81-120 (1)

0
0

SA/NA
NA

CA
CA

0.3  (22)
0.3  (22)

Mexico- [Me]
Central America [Am]

3100 5-16 (32)
15-25 (32)

~0.02
-0.9 – 0

ME-NA (33)*
(PM-)CA (10)§

RI/CO
CO

NA
NA-CA (9,35)§

-0.1  (34)
-0.3  (36)

Aleutian- [At]
Alaska [Ak]

3400 37-55 (37)
53-63 (37)

0
0

PA
PA

NA
NA

0.1  (22)
0.3  (22)

Tonga- [To]
Kermadec- [Ke]
Hikurangi [Hk]

3550 ~82-110 (38)
~82-110 (38)
~110-120 (38)

5.1 – 15.0
2.0 – 6.2
-0.2 – 1.4

TO-AU (39)*§

KE-AU (10,41)*§

KE-AU (10,41)*§

PA
PA
PA

AU
AU
AU

-0.38 (40)
-0.15 (22)^
-0.15 (22)^

Melanesia:
New Britain- [Br]
San Cristobal- [Cr]
N New Hebrides- [Hb]
C New Hebrides- [Hb]
S New Hebrides [Hb]

4400 ¶
~30 (18)
~1-70 (43)
~58-66 (43)
~67-70 (43)
~35-45 (45)

-1.6 – 9.3
~0
~0
~0 – 4
4.2 – 12.1

SB-PA (42)§

NH-AU (44)§†

NH-AU (44)§†

AU-SO (10)§

AU-(SO/WL) (10)§

AU
AU
AU

PA
PA
PA
AU
AU

?
?
?
?
?

Northwest Pacific:
Kamchatka- [Ka]
Kuril- [Ku]
Japan- [Jp]
Izu-Bonin- [Iz]
Mariana [Mr]

6550
~90-100 (37)
~100-130 (37)
~130-134 (47)
~130-146 (47)
~146-156 (50)

0 – 0.1
-1.3 – 0
-3.2 – -2.2
~0 – 0.175
-0.1 – 3.4

KA-OK (46)*
(OK-)AM (9)§

OK-AM (9)§

IB-PS (49)*
MA-PS (10)*§

PA
PA
PA
PA
PA

EU-OK (9)§

EU(-OK) (9)§

EU-AM (9)§

PS
PS

-0.3 (22)^
-0.3 (22)^
-0.3 (48)
-0.2 (22)^
-0.1 (22)^

South America:
Colombia- [Co]
Peru- [Pe]
Bolivia- [Bl]
Chile [Ch]

7400
13-30 (38)
22-44 (52)
44-52 (52)
1-51 (52,56)

~0
-0.7 – 0.0
-1.5 – -0.8
-1.3 – 0.0

PE-SA (10,53)*§

AP-SA (54,10) §

(CH)-SA (10,53)*§

NZ
NZ
NZ
NZ/AN

SA-ND (10)*
SA
SA
SA-(SC) (10)*§

-0.3 (48,51)
-0.3 (48,51)
-0.3 (55)
0.3 (22)

Sunda:
(Burma-) [Bu]
Andaman- [Ad]
Sumatra- [Sm]
Java- [Jv]
(Banda) [Ba]

7850 ‡

~70-90 (38)
43-100 (38)
~100-160 (38)

-0.4 – 2.8
0
0

BU-SU (10)* IN
AU
AU

EU-SU (9)§

EU-SU (9)§

EU-SU (9)§

0.6 (22)
0.2 (22)
0.2 (22)

Table S1. Data for all subduction zones on Earth including (trench-parallel) subduction zone width (which
serves as a proxy for slab width) (column 2), Subducting plate age at the trench (ASP) (column 3), trench-
perpendicular overriding plate deformation rate vOPD⊥ (column 4), overriding plate (or microplate) - arc block
circuit used to calculate vOPD⊥ (column 5), subducting plate (+microplate) used to calculate vSP⊥ (column 6),
overriding plate (+microplate) used to calculate vOP⊥ (column 7) and accretion/erosion rate (vA⊥) (column 8).
Note that the convergence velocity vC⊥ between the overriding plate and subducting plate can be calculated from
combining vOP⊥ and vSP⊥, i.e. vC⊥ = vOP⊥ + vSP⊥ with trenchward plate motion taken as positive, and is reference
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frame independent. Note that the trench velocity vT⊥ can be calculated from combining vOP⊥, vOPD⊥ and vA⊥, i.e.
vT⊥ = vOP⊥ + vOPD⊥ + vA⊥, where trench retreat is taken as positive. Note that the subduction velocity vS⊥ can be
calculated from combining vT⊥ and vSP⊥, i.e. vS⊥ = vT⊥ + vSP⊥. Subduction zone width was primarily calculated
from the plate tectonic model of Bird (2003). Note that the Nankai-Ryukyu subduction zone only has one slab
edge, as the northeast side of the subduction zone abuts with the northwest Pacific slab. Plate, microplate, and
arc block/arc deformation zone abbreviations, indicated in columns 5-7 by a unique two-letter abbreviation
characterized by two capitals, can be found in Table S2. The segments in between brackets in column 1 (Banda,
Burma, Dinarides, Hispaniola) are collision zones. In the first column the two-letter unique abbreviation for each
subduction zone (capital followed by lower case) is given in between the square brackets. Abbreviations in
column one: N—north, C—central, S—south. Numbers in parentheses in columns 3 and 5-8 point to the
following references: 1—Müller and Roest (1992); 2—Fernandez et al. (2007); 3—Catalano et al. (2001);
4—Serpelloni et al. (2005); 5—Lawver et al. (1995); 6—Taylor et al. (in review); 7—Nichols and Hall (1999);
8—Hall (2002); 9—Kreemer et al. (2003); 10—Bird (2003); 11—Rangin et al. (1999); 12—Evans et al. (1983),
Bader and Pubellier (2000); 13—McClusky et al. (2000); 14—Sutherland (1995), Gaina et al. (1998);
15—Barker and Lawver (1988), Livermore et al. (2005); 16—Smalley Jr. et al. (2007); 17—Vanneste and Larter
(2002); 18—Joshima and Honza (1987), Joshima et al. (1987); 19—Tregoning et al. (1998); 20—Hutchison et
al. (1981); 21—Nilforoushan et al. (2003); 22—Clift and Vannucchi (2004); 23—Briais et al. (1993);
24—Wilson (1993); 25—McCaffrey et al. (2007); 26—Kerr and Tarney (2005); 27—Sdrolias et al. (2004);
28—Mazzotti et al. (2001); 29—Hilde and Lee (1984), Deschamps et al. (2000), Deschamps and Lallemand
(2002); 30—Nishimura et al. (2004); 31—Müller et al. (1997); 32—Manea et al. (2005), Protti et al. (1994),
DeMets and Traylen (2000); 33—Suter et al. (2001); 34—Mercier de Lépinay et al. (1997), Vannucchi et al.
(2004); 35—Pérez et al. (2001); 36—Vannucchi et al. (2001); 37—Hilde et al. (1977); 38—Sdrolias and Müller
(2006); 39—Bevis et al. (1995), Zellmer and Taylor (2001); 40—Clift and Macleod (1999); 41—Wright (1993),
Darby and Meertens (1995), Wallace et al. (2004); 42—Tregoning et al. (1999); 43—Schellart et al. (2006);
44—Taylor et al. (1995), Calmant et al. (1997); 45—Sdrolias et al. (2003); 46—Kozhurin et al. (2006);
47—Sager et al. (1988); 48—von Huene and Lallemand (1990); 49—Seno et al. (1993); 50—Handschumacher
et al. (1988); 51—Clift et al. (2003); 52—Tebbens and Cande (1997), Tebbens et al. (1997); 53—Oncken et al.
(2006); 54—Norabuena et al. (1998), Bevis et al. (2001); 55—Laursen et al. (2002); 56—Yáñez et al. (2001).

§Based on geodetic data.
*Based on geological and/or geophysical data.
¶From this width, ~400 km stems from the westward continuation of the slab below New Guinea (Cooper and
Taylor, 1987).
$From this width, ~800 km stems from the northwestward continuation of the slab below the Dinarides (Wortel
and Spakman, 2000).
#From this width, ~550 km stems from the westward continuation of the slab below Hispaniola (Mann et al.,
2002).
†Australia is both the subducting plate and the overriding plate.
‡From this width, ~1400 km stems from the eastward continuation of the slab below the Banda arc and ~1250
km from the northward continuation of the slab below the Burma arc (Bijwaard et al., 1998; Milsom, 2001; Rao
and Kalpna, 2005).
AGeodetic investigations indicate a present day extensional rate of only 0.44 cm/yr (Fernandes et al., 2007),
while geological investigations indicate an extensional rate of 2 cm/yr (200 km of extension averaged over the
last 10 Myr) (Gutscher et al., 2002).
BGeodetic investigations indicate a present day extensional rate of only 0.2 cm/yr (Serpelloni et al., 2005), while
geological investigations indicate an average extensional rate of 6 cm/yr for the last 4 Myr (Rosenbaum et al.,
2004).
CGeodetic investigations indicate a present day trench-perpendicular opening rate of 0.7-0.9 cm/yr (Taylor et al.,
in review), while geological investigations imply an opening rate of 2.4 cm/yr based on an average calculated
from ~35-50 km of extension from ~1.3-4 Ma to Present (Lawver et al., 1995).
DGeodetic investigations indicate a present day trench-perpendicular opening rate of 4.9 – 9.1 cm/yr (Smalley Jr.
et al., 2007), while geophysical investigations indicate a trench-perpendicular opening rate of 3.6 – 6.7 cm/yr
(Thomas et al., 2003).
EGeodetic investigations indicate a present day extensional rate of up to 0.6 cm/yr in the south and shortening of
up to 0.4 cm/yr in the north (McCaffrey et al., 2007), while geological investigations imply an extensional rate
of 0-1.2 cm yr in the south (Wells et al., 1998).
^Not constrained but inferred from comparative geology and tectonics (Clift and Vannucchi, 2004). These rates
have been incorporated in the calculations presented in Fig. 3F in the paper, but have not been incorporated in
the vT⊥ and vS⊥ calculations.
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Table S2.  Two-letter abbreviations for plates, microplates and arc blocks.
Plate

abbreviation
Plate Microplate

abbreviation
Microplate Arc block / sliver /

deformation zone
abbreviation

Arc block / sliver /
deformation zone

AF Africa AM Amuria AP Altiplano
AN Antarctica AT Anatolia AS Aegean Sea*
AR Arabia BS Banda Sea BE Betic-Rif*
AU Australia MS Molucca Sea BH Birds Head
CA Caribbean ND North Andes BU Burma
CO Cocos OK Okhotsk CB Calabria*
EU Eurasia RI Rivera CH Chile*
IN India SC Scotia IB Izu-Bonin*
JF Juan de Fuca SO Solomon KA Kamchatka*
NA North America SU Sunda KE Kermadec
NZ Nazca YA Yangtze LU Luzon*
PA Pacific MA Mariana
PS Philippine Sea ME Mexico*
SA South America MK Makran*

NH New Hebrides
NV Northern Vancouver Island*
OL Olympic*
ON Okinawa
OR Oregon*
PE Peru*
PM Panama
SB South Bismarck
SL South Shetland
SW Sandwich
TK Tokai South Kanto*
TO Tonga
WL Woodlark

Table S2. Abbreviations for plates, microplates, arc blocks, arc slivers and arc deformation zones. Note that
these entities are represented with two capitals (following Bird, 2003). Note that for subduction zones, collision
zones and incipient subduction zones a two-letter abbreviation with one capital followed by a lower case is
used.

*Arc blocks, arc slivers and arc deformation zones with relatively diffuse deformation.
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