GSA DATA REPOSITORY item 2004104

In this data repository we expand our discussion of our methods for identifying and projecting channel segments. We extracted channel profiles for 97 tributaries to the Red River with drainage area >40 km² from 90 m DEM data (Figs. DR1 and DR2, see Fielding et al., 1994 for dataset details). Channels segments were identified, and a concavity (χ) and normalized steepness (k_s) determined for each using methods developed by Snyder et al. (2000), Kirby and Whipple (2000) and Kirby et al. (2003). Concavity was determined by a linear best fit to slope-area data on a log-log plot over the drainage area corresponding to the channel segment. Because steepness index is highly correlated to concavity, a normalized steepness was determined over the same drainage area, but with a fixed concavity of 0.45. The actual value we use matters little, but this value is within the range of commonly reported concavities (Tucker and Whipple, 2002).

Channel segment categorization

Channel segments within each profile were then categorized as upper, middle or lower segments (Fig. DR2 and Table DR1). We used a number of criteria in this identification, including position along the channel, channel concavity and normalized steepness, and relationship to our field and DEM-based observations of the various landscape components.

Upper segments are consistently low in concavity (most in the range 0.2 to 0.6) and low in slope (most in the range 20 to 60), and of course always occur in the uppermost part of the tributary profile. Some channel segments which fit these criteria, however, were rejected because they corresponded to a region where, based on DEM analysis or field observation, the relict landscape has been removed. In such cases, these channel segments were categorized instead as middle segments.

Middle channel segments usually have a concavity less than 1 (for 89% of channel segments) and a normalized steepness index less than 150 (for 82% of channel segments). An upper channel segment may be present upstream of the middle segment and a lower channel segment is always present downstream. In many cases, we identified two middle channel segments which have slightly different channel parameters and are separated by an internal knickpoint. These internal knickpoints may reflect a wide range of factors, including, most importantly, lithology

and data noise, but given the regional coherence of the three-segment pattern and the relative consistency of channel parameters across these internal knickpoint, we do not think this causes difficulty for our overall analysis. In these cases, parameters for both segments are retained in Table DR1 and for determination of mean parameters.

Lower channel segments must exist in every tributary profile. Concavity in these segments is usually greater than 1 (for 87% of channel segments) and normalized steepness is greater than 150 (for 94% of channel segments). We also observed a number of examples in which segments we categorize as lower channel segments are separated by an internal knickpoint. Again, we do believe this causes difficulty for our analysis.

In a number of channels (15), which we refer to as "fully equilibrated" channels, we observed no discernible knickpoints.

Channel segment projection

We were able to fit and project upper and middle channel segments for 28 and 30 profiles respectively (Table DR2 and Fig. DR3). Using mean concavity values of 0.38 for the upper segments and 0.64 for the lower segments, we obtained a linear best fit to the slope-drainage area data over a specified drainage area range corresponding to the channel segments (same as for determining steepness index with a fixed concavity, described above). Uncertainty was determined based on the standard deviation of slope and area data and propagated through the steepness index calculation. Using this steepness index, the input concavity and the drainage area data downstream of the channel segment, we projected the channel profile to its confluence with the Red River. We repeated this for the maximum and minimum steepness index values based on the steage 1), incision recorded by the middle channel segments (stage 2) and the ratio of stage 2 to stage 1 incision are calculated (Table DR2). All possible upper and middle channel segments were projected. Reasons for not projecting channels include: (1) insufficient data for a meaningful regression; (2) too much scatter in the data for a meaningful regression; (3) drainage area is too large, different processes may be operating on these channels compared to shorter

tributaries, and therefore comparison is innappropriate; or (4) there are multiple channel segments.

REFERENCES

Fielding, E., Isacks, B., Barazangi, M., Duncan, C., 1994, How flat is Tibet?: Geology, v. 22, p. 163-167.

- Kirby, E., and Whipple, K.X., 2001, Quantifying differential rock-uplift rates via stream profile analysis: Geology, v. 29, p. 415-418.
- Kirby, E., Whipple, K.X., Tang W., and Chen Z., 2003, Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, Journal of Geophysical Research, v. 108, doi:10.1029/2001JB000861.
- Snyder, N.P., Whipple, K.X., Tucker, G.E., and Merritts, D.J., 2000, Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California: Geological Society of America Bulletin, v. 112, p. 1250-1263.
- Tucker, G.E., and Whipple, K.X., 2002, Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison: Journal of Geophysical Research, v. 107, doi:10.1029/2001JB000162.

FIGURE CAPTIONS

Figure DR1. Red River drainage network derived from 90 m DEM (see Fielding et al. (1994) for dataset details). Trunk channel shown with a heavy weight line, analyzed tributaries with a medium weight line and additional, non-analyzed tributaries with a fine weight line.

Figure DR2. Longitudinal profiles for 97 tributaries to the Red River in China, tributary locations shown in Figure DR1. Channel segment categorization is indicated by a colored box, with blue for upper channel segments, green for middle channel segments and red for lower channel segments. Fully equilibrated channels are indicated with a purple box. Numbers within each box indicate the concavity and the normalized steepness index (separated by a slash) for each channel segment. This data is tabulated in Table DR1. Channel segment boxes without steepness index or concavity values correspond to cases in which the channel segment was too short and therefore contained too few data points for a meaningful regression, or cases in which there was too much scatter in the data for a meaningful regression. Tributaries are labeled if they are fully equilibrated, if they are of the two-segment morphology, or if a channel segment is projected. If an appropriate channel segment is not projected, the reason is given in the label. See text for further explanation. Tributaries are arranged roughly according to upstream distance with Ailao Shan tributaries on the left hand side of the figure and Yangtze Plateau tributaries on the right hand side. Position of the Red River fault marked on Ailao Shan tributaries. Bend in the Red River fault occurs approximately between tributaries 54 and 55.

Figure DR3. Projected channel segments for 44 tributaries to the Red River. Longitudinal profile data shown in plots on left hand side with projected channel segments for upper and/or middle channel segments indicated with a solid line, and uncertainty indicated with dashed line. Elevations of projected intersections with the Red River are tabulated in Table DR2. Slope-area data for longitudinal profiles shown in plots on right hand side with fit used to determine steepness index indicated with solid lines and uncertainty indicated with dashed lines. Concavity and steepness values differ between Table DR1/Figure DR2 and Figure DR3 because concavity for DR2 is determined by a best fit to the data and steepness is determined with a fixed concavity of 0.45, while for figure DR3, concavity is a fixed value of 0.38 for upper segments and 0.64 for middle segments, and steepness values are determined using these fixed concavities.

Tributary Number	Upper Concavity [†]	Upper Steepness [‡]	Middle Concavity	Middle Steepness	Lower Concavity	Lower Steepness	Channel location and type§
1 (u,m)	0.63	31	0.73	197	14.00	419	Yunnan Plateau
					4.20	273	
2 (m)			0.52	126	1.10	279	Ailao Shan
3 (m)			0.42	106	9.10 2.00	162 256	Ailao Shan
5 (11)			0.42	100	10.00	164	Anao Shan
4 (m)			0.44	158	0.57	294	Ailao Shan
5 (u)	0.49	20	0.24	86	2.50 1.40	302 164	Yunnan Plateau
5 (u)	0.49	20	0.24	80	2.80	201	i uinan i iateau
6 (u)	0.38	66			2.30	453	Ailao Shan
7			0.38	95	3.00	302	Yunnan Plateau
8 (m)			0.40	125			Ailao Shan
9 (u)	0.21	29	0.63	203			Yunnan Plateau
10 (m)			0.50	139	1.20	213	Ailao Shan
					1.70	301	
11			0.62	72	1.40 7.20	293 656	Yunnan Plateau
			0.88	160	,.20	000	i annan i iateau
12 (m)			0.45	131	0.57	246	Ailao Shan
13					0.52	145	YP equilibrated
14			1.30	137	1.90	389	Yunnan Plateau
15 (u,m)	0.30	36	0.84	140	1.60 6.40	201 288	Ailao Shan
15 (u,iii)	0.30	30	0.84	140	2.10	288	Anao Shah
16			0.23	26	4.50	145	Yunnan Plateau
17 ()			0.73	93	7.90	313	4.''L C1
17 (m)			0.40	139			Ailao Shan
18			1.50	90	4.50	143	Yunnan Plateau
19			0.50	15	3.20	515	Yunnan Plateau
17			0.50 1.00	45 164	11.00	534	i uinan Piateau
20			0.23	129	4.50	341	Ailao Shan
21 (u,m)	0.45	24			4.30	453	Yunnan Plateau
22					0.32	161	AS equilibrated
23			0.72	74	6.30	687	Yunnan Plateau
26			1.40 0.90	141 103	0.42	243	Ailao Shan
27 (u,m)	0.22	56	0.29	163	0.84	246	AS equilibrated
28			0.55	19	2.20 8.30	241 514	Yunnan Plateau
			0.74	97			
29 (u,m)	0.43	31	1.20	80	3.30	106	Yunnan Plateau
30			0.26	67	3.80 1.50	465 318	AS equilibrated
50			0.26	172	3.00	318	AS equilibrated
31			0.37	61	2.60	252	Yunnan Plateau
22			0.18	161	0.72	212	
32					0.73	213	AS equilibrated

TABLE DR1. NORMALIZED STEEPNESS AND CONCAVITY VALUES, ALL CHANNEL SEGMENTS

33			0.20	46	0.18	183	Yunnan Plateau
34			1.00 0.34	175 124	5.70	186	Ailao Shan
			0.40	275			
35 (m)			0.39	118	1.50	205	Yunnan Plateau
36			0.40	106	2.10	179	Ailao Shan
37 (u,m)	0.17	41	1.00 1.00	147 99	2.20	309	Yunnan Plateau
					10.00	297	
38			0.72 1.30	63 71	3.50	414	Yunnan Plateau
39 (m)			0.32	51	0.93	312	Ailao Shan
40			1.20	80	2.70	479	Yunnan Plateau
41 ()	0.42	22	0.40	90	2.00	120	A '1 G1
41 (u,m)	0.43	23	1.00	107	3.00	438	Ailao Shan
42 (m)			1.50	141	8.90	667	Yunnan Plateau
43			0.44	59	2.30	325	Ailao Shan
			1.20	187			
44			0.53	85	0.37	102	Yunnan Plateau
45			0.47	52 132	4.30	375	Ailao Shan
46 (u)	0.27	18	0.41 0.39	132	2.70	334	Ailao Shan
47			0.32	59			Yunnan Plateau
			0.62	86	1.00	277	
48 (m)			0.70	64	4.00	277	Ailao Shan
49					1.70	160	Ailao Shan
50					0.45	149	NE equilibrated
51			0.18	98	1.80	123	Ailao Shan
52			0.36	244	0.63	190	NE equilibrated
53					0.57	102	AS equilibrated
54			0.53	50	23.00	305	AS
			0.23	144			
55 (m)			0.35	94	2.00	234	AS
56					0.51	163	YP equilibrated
57					0.48	142	YP equilibrated
58 (u)	0.07	21			1.40	473	AS two segment
59					0.40	95	YP equilibrated
60 (u)	0.50	15	0.92	247	6.40	417	Ailao Shan
61 (m)			0.74	66	3.30	271	Ailao Shan
01 (111)			0./4	00	3.30	326	Anao Shan
62					0.52	111	YP equilibrated
63					0.59	146	YP equilibrated
64 (u,m)	0.56	26	1.10	125	4.30	496	Ailao Shan
(,)	5.00						

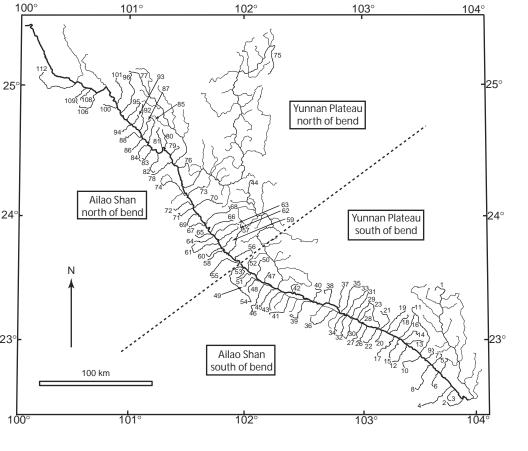
65 (u,m)	0.91	45	0.80	70	5.20	608	Ailao Shan
66 (u,m)	0.30	32	0.30	93	0.97	169	Yunnan Plateau
67					0.67	243	AS equilibrated
68 (m)			0.70	90	1.80	159	Yunnan Plateau
69 (u)	0.30	46	0.52	101	4.20	457	Ailao Shan
70 (m)			0.50	86			Yunnan Plateau
71			0.46	68	5.50	593	Ailao Shan
			0.25	135			
72			0.39	56	3.00	482	Ailao Shan
			1.50	249			
73			0.69	71	5.60	362	Yunnan Plateau
15			0.19	130	5.00	502	i unnan i lateau
74 (u)	0.55	64	0.69	262	4.20	357	Ailao Shan
75			0.59	36			Yunnan Plateau
76 (u,m)	0.28	29	0.46	67	2.20	214	Yunnan Plateau
70 (u,iii)	0.28	29	0.40	07	5.60	214	i uilliali r lateau
77			0.51	41	5.00	255	Yunnan Plateau
11			0.51	41			i unnan riateau
78 (u)	0.37	38			1.70	459	AS two segment
79 (u)	0.23	54	0.90	180	1.20	203	Yunnan Plateau
					6.60	190	
80 (u,m)	0.27	31	0.64	103	1.00	160	Yunnan Plateau
					1.30	212	
81 (m)			0.60	117	1.20	179	Yunnan Plateau
82 (u)	0.38	40					Ailao Shan
02 (u)	0.50	10					Tinuo Shun
83 (u,m)	0.19	7	0.44	73	1.10	411	Ailao Shan
84 ()	0.47	24	0.96	(0)	1.60	200	A :1 Ch
84 (u,m)	0.47	24	0.86	60	1.60 5.40	300	Ailao Shan
0.5			0.44	02		682	V DI
85			0.44	83	2.10	266	Yunnan Plateau
0.6			0.82	131			
86			0.28	44	6.60	535	Ailao Shan
			1.30	95			
			0.86	175			
87 (u)	0.80	57	0.72	85	2.60	409	Yunnan Plateau
			0.40	131			
88 (u)	0.31	24			0.73	281	AS two segment
92					0.26	144	YP equilibrated
92					0.20	144	11 equilibrated
93			0.10	66	0.15	205	Yunnan Plateau
94					0.31	208	Ailao Shan
94					0.31	208	Allao Shah
95			0.97	66			Yunnan Plateau
96					0.72	105	YP equilibrated
							-
100			0.30	160	0.84	186	Ailao Shan
101 (u)	0.29	63	0.62	141	1.40	150	Yunnan Plateau
101 (u)	V.47	05	0.04	1.41	1.40	1.70	i uman i latead
					1.40	167	

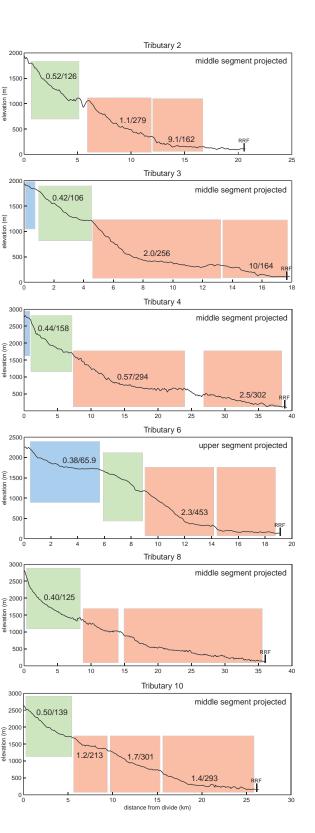
106	0.36	25	2.00	156	Ailao Shan
108	0.62	43	1.50	265	Ailao Shan
109	0.67	90 102			Ailao Shan
112	2.20	103	0.35	71	AS equilibrated

Note: See Figure DR1 for channel locations and Figure DR2 for tributary morphology. Tributaries for which upper segments are projected are marked with a u, and for which middle segments are projected are marked with an m. Projection data given in DR Table 2 and Figure DR3.

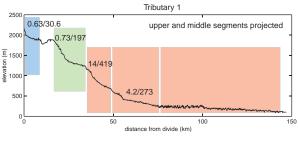
[†]Concavity determined by linear regression to selected slope-area data using a 20 m contour interval.

[‡]Normalized steepness index determined by linear regression to slope-area data but with a fixed concavity of 0.45. [§] Channels to the southwest of the Red River are designated as "Ailao Shan" and channels to the northeast are


"Yunnan Plateau." Fully equilibrated channels (no internal knickpoints or segmentation) from the southwest are labeled "AS equilibrated" and from the northeast are "YP equilibrated." Channels with a two segment morphology (upper and lower channels only) all four within the Ailao Shan, are labeled "AS two segment."

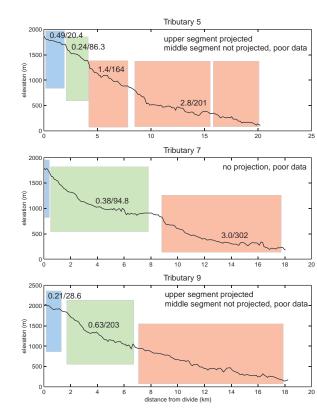
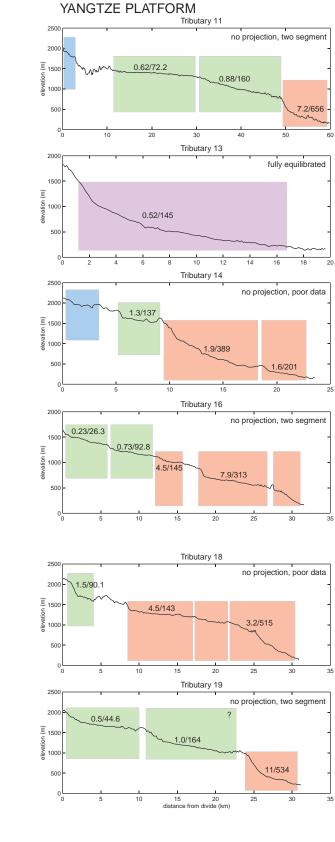
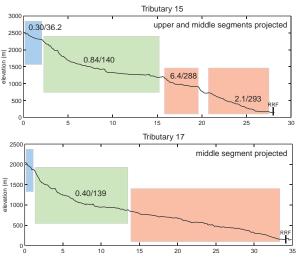
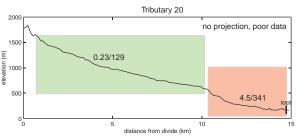

TABLE DR2. PROJECTED CHANNEL SEGMENT VALUES AND RIVER INCISION

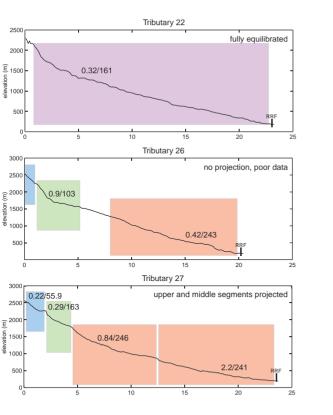
Trib.	River	Upper proj.	Middle proj.	Total incision	1 st stage	2 nd stage	Incision ratio	Channel
number	elev (m)	elev (m) ^{\dagger}	elev (m) [‡]	(m)	incision (m)	incision (m)	2 nd :1 st stage	location
1	91	1234 ± 732	631 ± 446	1143 ± 732	603 ± 857	540 ± 446	0.90 ± 0.74	Yunnan Plateau
5	110	1407 ± 299		1297 ± 299				Yunnan Plateau
6	108	1485 ± 201		1377 ± 201				Ailao Shan
9	172	1499 ± 228		1327 ± 228				Yunnan Plateau
15	146	1662 ± 240	780 ± 421	1516 ± 240	882 ± 485	634 ± 421	0.72 ± 0.48	Ailao Shan
21	183	1652 ± 239	1004 ± 211	1469 ± 239	648 ± 319	821 ± 211	1.27 ± 0.33	Yunnan Plateau
27	189	1490 ± 348	1154 ± 322	1301 ± 348	336 ± 474	965 ± 322	2.87 ± 0.96	Ailao Shan
29	207	1592 ± 343	1142 ± 213	1385 ± 343	450 ± 404	935 ± 213	2.08 ± 0.47	Yunnan Plateau
37	232	1453 ± 398	1126 ± 263	1221 ± 398	327 ± 477	894 ± 263	2.73 ± 0.80	Yunnan Plateau
41	301	1751 ± 472	1061 ± 384	1450 ± 472	690 ± 608	760 ± 384	1.10 ± 0.56	Ailao Shan
46	340	1721 ± 340		1381 ± 340				Ailao Shan
58	426	1876 ± 65		1450 ± 65				Ailao Shan
60	432	2012 ± 133		1580 ± 133				Ailao Shan
64	426	1924 ± 143	1335 ± 246	1498 ± 143	589 ± 285	909 ± 246	1.54 ± 0.42	Ailao Shan
65	441	1770 ± 322	1730 ± 141	1329 ± 322	40 ± 352	1289 ± 141	32.23 ± 3.55	Ailao Shan
66	435	1412 ± 355	1148 ± 270	977 ± 355	264 ± 446	713 ± 270	2.70 ± 1.02	Yunnan Plateau
69	541	1845 ± 261		1304 ± 261				Ailao Shan
74	541	1675 ± 679		1134 ± 679				Ailao Shan
76	605	1394 ± 408	1237 ± 130	789 ± 408	157 ± 428	632 ± 130	4.03 ± 0.83	Yunnan Plateau
78	619	2189 ± 267		1570 ± 267				Ailao Shan
79	653	1459 ± 139		806 ± 139				Yunnan Plateau
80	710	1517 ± 244	1190 ± 288	807 ± 244	327 ± 377	480 ± 288	1.47 ± 0.88	Yunnan Plateau
82	752	2136 ± 348		1384 ± 348				Ailao Shan
83	792	2352 ± 64	1968 ± 79	1560 ± 64	384 ± 102	1176 ± 79	3.06 ± 0.21	Ailao Shan
84	806	2187 ± 195	2053 ± 162	1381 ± 195	134 ± 254	1247 ± 162	9.31 ± 1.21	Ailao Shan
87	855	1496 ± 468		641 ± 468				Yunnan Plateau
88	860	2401 ± 216		1541 ± 216				Ailao Shan
101	1046	1629 ± 225		583 ± 225				Yunnan Plateau

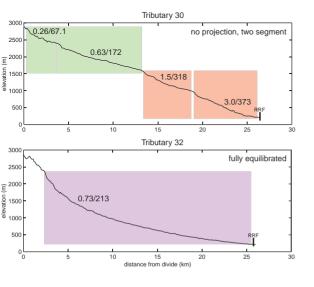

Note: Errors are 1 sigma, calculated for projections as described in data repository text and propagated through incision and incision ratio determinations. See Figure DR1 for channel locations and Figure DR3 for channel morphology. [†]Elevation at projected upper channel segment at intersection with Red River.

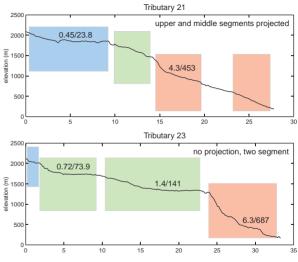
[‡]Elevation of projected middle channel segment at intersection with Red River.

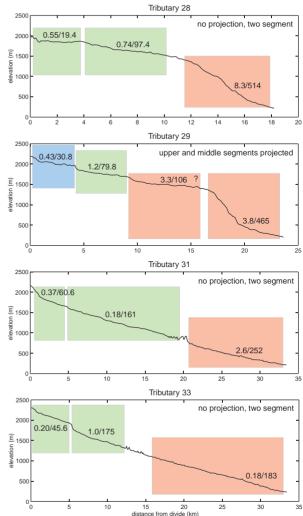
YANGTZE PLATFORM

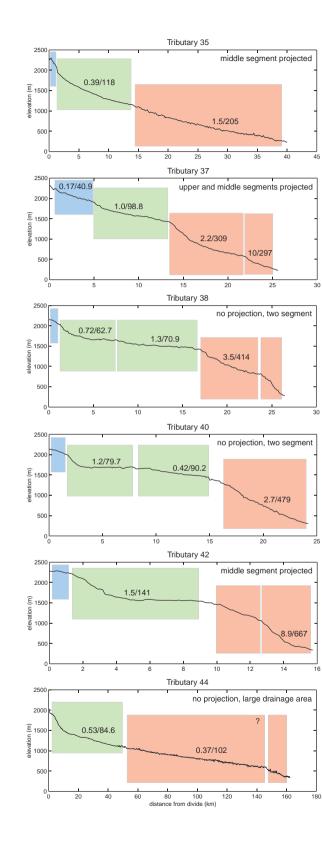





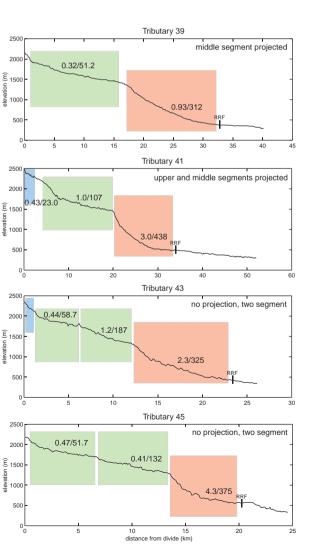

Figure DR2.1

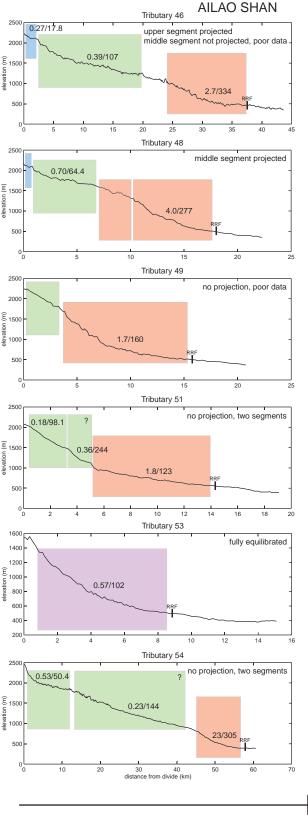


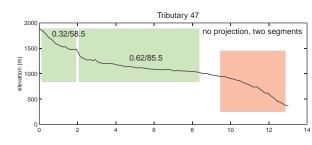


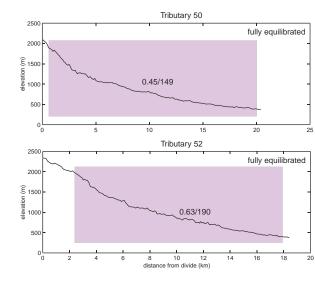




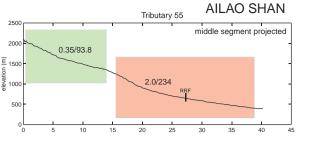

YANGTZE PLATFORM

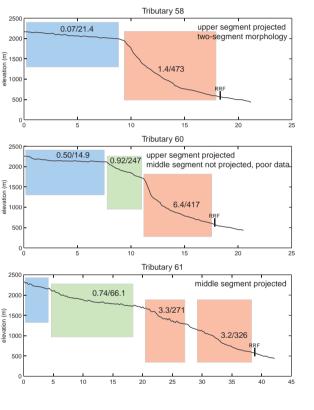


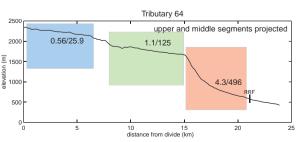


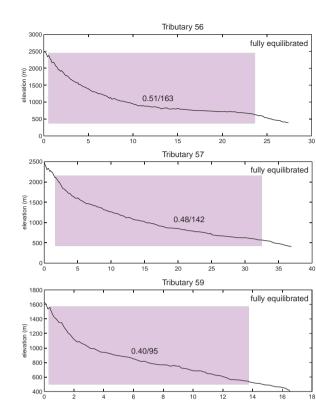


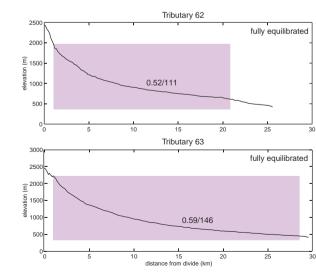
AILAO SHAN Tributary 34 3000 no projection, two segment 2500 \0.34/124 2 2000 1500 0.40/275 क 1000 5.7/186 500 0 ^L 0 10 15 5 20 Tributary 36 3000 no projection, two segment 2500 0.40/106 Ê 2000 ation 1500 1.0/147 음 1000 2.1/179 500 0` 0 10










BEND

