Brittle Structures and Their Role in Controlling Porosity and Permeability in a Complex Precambrian Crystalline Rock Aquifer System in the Colorado Rocky Mountain Front Range

Data Repository Item: Detailed Description of Methods

Jonathan Saul Caine, U. S. Geological Survey, P.O. Box 25046, MS 973, Denver, CO, 80225 Stephanie R. A. Tomusiak, Department of Geological Sciences, Campus Box 250, University of Colorado, Boulder, CO, 80309

Introduction

The following data repository appendix is intended to be a supplement to the paper Brittle Structures of the Turkey Creek Watershed, Colorado Rocky Mountain Front Range: Aquifer System Characterization and Controls on Groundwater Hydrology. This appendix is a detailed description of that which is synopsized in the paper and it covers how fracture network data were collected in the field, how that data was compiled and analyzed in order to generate the needed parameters to construct Discrete Fracture Network (DFN) models, how the models were constructed, and how fracture network potential porosity and fracture network potential permeability were calculated. Figure numbers refer to those in the paper. Table numbers also refer to those in the paper with the exception of those prefixed by the letter DR which are data repository items.

Field Data Collection

Overview

Several approaches have been used to characterize fracture network hydraulic parameters. These have included aquifer hydraulic tests and numerical modeling with discrete fracture network modeling schemes (Anna and Wallman, 1997; Jones et al., 1999); fracture network data collection from pavements and tunnels (Sweetkind et al, 1997); analysis of mineralized and altered fracture networks as indicators of the systematics of paleoflow in an aquifer (Taylor et al., 1999); borehole televiewer logging and flow metering (Paillet and Pedler, 1996); lineament analyses (Bryant et al., 1975); and environmental tracer analyses (Abelin et al., 1991). Many studies, however, only address one of two major components of the needed information for comprehensive groundwater resource evaluation in fractured rock at the watershed-scale (notable exceptions come from work at Mirror Lake, New Hampshire, e.g., Barton, 1996; Hsieh and Shapiro, 1996; Tiedeman, et al., 1998). These components include either field-based characterization of the geometric properties of fracture networks (typically from the borehole to outcrop to aerial photographic scales) or aquifer hydraulic testing to directly measure hydraulic parameters (typically at the scale of individual to multiple boreholes). The following describes the field data collection techniques used in this study (for raw on-line data see Caine, 2001). The analyses of the fracture network data, how it is modeled and combined with geologic characterization; and limited borehole-scale aquifer test data are described in subsequent sections.

Outcrop Selection and Fracture Data Collection Along Scanlines

Field work and inspection of color aerial photographs (at a scale of about 1:12,000) were used to select representative exposures of the dominant lithologic groups segregated by assuming: 1) groundwater flow and storage in crystalline rocks dominantly occurs in fracture networks 2) the groups are composed of similar lithologies with a similar geological history and

response to brittle deformation, they should exhibit similar hydrogeological properties (e.g., permeability and storage capacity). Three hydraulically significant lithologic groups were identified at the watershed scale: 1) metamorphosed and foliated gneisses and schists, 2) large intrusive quartz monzonites and other granitic rocks found in plutons, and 3) major fault zones that cut both the metamorphic and igneous rock groups (Figure 1 and Table 1).

Nine natural outcrops were selected (Figure 1) and they have length scales of at least thirty meters and exposures of at least two near orthogonal faces were sought. By taking measurements on two near-orthogonal faces, fractures that were subparallel to one face were captured on the second face in an attempt to eliminate scanline orientation bias (e.g., Terzaghi, 1965). Typically at least three and up to nine scanlines were analyzed at each of nine localities shown in Figure 1. Scanline sampling was used to collect the raw fracture network data (e.g., Priest, 1993). A graduated tape, or "scanline" was stretched across the outcrop face and where practical, scanlines were set up at near right angles to major fracture sets to further avoid scanline-fracture set orientation bias. For each fracture that intersected the tape position (from which spacing and density are derived – see below), orientation, trace length, termination, an estimate of aperture, degree and type of mineralization, shape, roughness, and any indicators of timing relationships (e.g. crosscutting and offset of other fracture sets) were recorded (Table DR1). These parameters form the basic fracture data from which the DFN models are constructed.

Since the foliated rocks were folded and faulted, at least prior to the emplacement of the Silver Plume, any indication of structural position of each locality was also determined. Rock type, 'unit' contacts, compositional layering, foliations and a variety of lineations were also recorded at each locality.

Fracture Network Data Analysis, DFN Model Construction, and Matching DFN Models to Field Data

Overview

The statistical analysis of natural fracture data for construction of DFN models and estimation of potential porosity and potential permeability were completed in several steps combining a number of methods and computer programs (Figure 2). A spreadsheet program, Stereonet (Allmendinger, 1995), and FracManTM (see Dershowitz et al., 1996) by Golder Associates, Inc., were the primary computer codes used to calculate statistical representations of the field parameters needed to construct the DFN models.

Analyses completed in this study are based on the assumption that fracture sets can be distinguished by statistical methods (e.g., mean orientations and dispersions) and that the interaction of these sets and their individual properties determine the hydraulic behavior of the fracture networks at a variety of scales. All other fracture set parameters, such as trace length, are then calculated on a set by set basis. Although natural fracture sets can be distinguished by a number of parameters such as orientation, mineralization species, relative ages, length, and morphology, the sets assigned in this study are based exclusively on orientation. This is primarily due to the lack of unique mineralization signatures, age markers, and general uniformity of length and morphology in any given set.

FracManTM creates three-dimensional rectangular regions that are filled with synthetic fractures whose properties statistically honor field data. All fractures in this study are modeled

as smooth, parallel walled, hexagonal plates. The fracture network parameters that are most closely matched to the field data in the DFN models include fracture position, orientation, trace length, and terminations. Mineralization, spacing, shape, roughness, and particularly aperture are the most poorly honored parameters in the DFN models.

When constructing a DFN model, FracManTM initially selects a fracture center point from a random seed for the first fracture in the first simulated fracture set. It then randomly selects an orientation and length from the statistical distribution for that set. These parameters are assigned to the first fracture and the synthetic fracture is "grown" in the specified model domain. The center point of the next fracture is positioned as defined by a fracture spacing model. The above process is repeated, until the first set has been completely "grown" in accordance with the specified fracture intensity for that set. Each successive set is generated until the DFN model is complete. As each fracture is generated the fracture termination data are honored by allowing for random truncations and free tips in accordance with the field data for each set. The following is a description of how each fracture network parameter is obtained or simulated to form input into FracManTM.

Modeling Fracture Orientations and Set Designation

Field orientation data are plotted on lower hemisphere equal area projections and contoured using the Kamb method (Figures 1 and 2). Clusters of the raw and contoured data are segregated, and the mean orientation and Fisher dispersion for each cluster (set) are calculated (Table DR1). The choice of any individual set is based on the tightness of the cluster and observations made in the field. For each fracture set all data for individual fractures (e.g., position, trace length, and terminations) in that set are segregated to form a complete data set.

Fracture Length Modeling

Trace length statistics, including means, standard deviations, and functional probability distributions for each set are the next parameters that are simulated from field data. A probability density function is plotted for the raw trace length data using FracManTM. Fracture termination style (e.g., free tips and truncations by neighboring fractures) and type of censorship, if any, are also incorporated into the simulated fracture length distributions (Table DR1). In order to assign an appropriate distribution and derive a mean fracture radius that best matches the field data, trace planes and scanlines are simulated with the same orientations and sizes of those in the field from which the data was collected (Dershowitz et al., 1996). Multiple simulations of fracture traces are generated with the FracSizeTM module of FracManTM. The initial simulation uses the field-derived mean radius, standard deviation, and distribution model. Simulations are repeated until a satisfactory match is obtained between the observed and measured data. The criteria for a 'good' fit is arbitrarily based on the results of standard Kolomogorov-Smirnov (K-S) and Chi-Squared (χ^2) tests. Ninety percent or better significance was sought for both K-S and χ^2 for most simulations. Much of the data were difficult to fit at such high degrees of significance for both tests, although the K-S tests were generally successful in obtaining high percent significances. The average K-S test percent significance for all sets is 93.5% and 69.0% for all of the χ^2 tests (Table DR1).

Outcrop measurements give trace lengths that are usually not the actual diameter of any individual fracture which presents an interesting problem with converting trace length data to fracture radii. For example, fracture traces on an outcrop face represent a partial arc of a circular fracture, and therefore tracelengths always represent a length less than or equal to the true

fracture diameter. Conversion from trace length to diameter or radius, the input parameter for FracMan TM, depends on the shape of the fracture and the location of the fracture center relative to its intersection with the outcrop face. In making the conversion we have assumed the field data yield a random sample and that the actual fractures can be adequately represented by circular (penny-shaped) fractures intersected by the outcrop face. The FracSize M module handles this problem by generating a set of random fractures with specified a mean, standard deviation, and distribution for fracture lengths (in this case the measured field data) and then samples the simulated fracture set in the specified trace plane (in this case using the outcrop face orientation and dimensions). The fracture set lengths simulated in FracSize M use radii picked from the mean, standard deviation, and a simulated probability density function to produce a statistically best-fit set of trace lengths that form the closest match to the field data.

Fracture Spacing Model

Following fracture length, spacing and intensity are the next parameters to be modeled. Fracture spacing is best represented by a uniform distribution, and an Enhanced Baecher model (Dershowitz et al., 1996) yields DFN models that best match the field observations. The Enhanced Baecher model locates fracture centers in a model domain using a Poisson distribution and allows for fracture terminations at intersections with preexisting fractures (Dershowitz et al., 1996). The Enhanced Baecher model produces fracture sets with relatively uniform spatial distributions and minimal clustering, as generally observed in the field.

Simulation of Fracture Intensity and Calibration to Field Data

Fracture intensity can be expressed as fracture area per unit volume (i.e., m²/m³, or P32 in the language of FracManTM). Fracture intensity is defined here as the number of fractures per unit line length (i.e., 1/m, or P10 in the language of FracManTM). Previous attempts to quantify fracture intensity in the TCW were based on lineament analysis of high elevation aerial photographs and limited outcrop work (Hicks, 1987; Table DR3). Although fracture intensities estimated from lineament analysis are two dimensional, highly biased to linear features that are often quite large (100's to 1000's of meters), are at high angles to the surface of the Earth, and may not actually be fractures, Hicks' (1987) results yield intensities in the range of 0.06 to 6 fractures per meter.

Since fracture-dominated fluid flow is a three dimensional problem, three dimensional modeling is appropriate. Although fracture intensity in a volume cannot be measured directly it can be simulated from scanline or P10 data. Because the dimensions of fracture area per unit volume (P32) and number of fractures per unit line length (P10) are the same (i.e., 1/length), P32 can be estimated from P10. Simulation of fracture intensity is also part of 'calibrating' simulation input parameters to field data. The essence of the calibration is to first set up a three dimensional, cubic model region or model domain in FracManTM that is just larger than the largest scanline measured in the field. Three adequately orthogonal scanlines are simulated within the model region. These have the same orientations and lengths as those measured in the field for each locality. The relative positions of the simulated scanlines in the model region can be chosen at random, as are the actual scanlines in the field locations. Values for P10 are calculated for each fracture set on each scanline (see Table DR1 and DR2). An initial value is specified for P32 (usually the observed P10 value) and used in Monte Carlo simulations to generate model P10 values for each fracture set on each scanline. The simulated P10 values are compared to the observed P10 values and the simulations are repeated until the input P32 value

results in a close match to the observed and simulated P10 values. The relative quality of a match is determined by calculating the relative percent error for each simulation. Thus, given 100 realizations constructed with the same statistical parameters but different initial seeds, the resulting number of simulated fracture intersections (Mi) in each simulated scanline is compared with the observed number of intersections (Oi) from the field scanlines. The relative percent error (Mi-Oi/Oi*100) is then calculated for each simulation and the input P32 is adjusted until the error is arbitrarily and usually less than 20 percent (Table DR2).

The next step in the process is to further adjust and match P32 using all of the fracture sets in the full model domains and three orthogonal scanlines for the location being simulated, using 15 meter cubes for all non-fault zone model domains, and 2 meter cubes for all fault zone model domains. Once reasonable estimates of P32 are derived from the P10 matching process described above, a similar process of populating the full model domains with all fracture sets is initiated. An estimate of P32 for each fracture set is run 100 times using a Monte Carlo style simulation. The number of intersections for each simulated fracture set on each simulated scanline is compared with the observed data and the average relative error is again calculated for all of the 100 realizations (Table DR2). The P32 values are systematically adjusted within reasonable values compared to the field data until the average relative error for each simulated scanline is arbitrarily within about 20 percent of the observed values.

For most of the DFN models, single scanline calibrations are well within 20 percent average relative error (Table DR2). Several fracture sets were outliers that would not successfully calibrate to within 20 percent, however, because this study is a first attempt to generically represent the field data the results are considered acceptable. The final step in the fracture generation process is to choose the best single realization generated by one random seed, which has the lowest relative percent error using all scanlines. For each of the DFN models, each simulated fracture set along each simulated scanline is within 20 percent and generally below 10 percent with an average total percent relative error of 3.7 for all DFN models (Table DR2). This best single DFN model for each location is saved and used for calculating potential fracture porosity scenarios and running fluid flow simulations as described below.

Estimates of Fracture Network Potential Porosity

Approach

Calibrated DFN models were constructed for each of the representative outcrop localities in the TCW as described above (Figure 1). Three DFN models represent the Silver Plume quartz monzonite, four DFN models represent the foliated gneissic rocks, and three DFN models represent the distributed deformation zone faults (as in Caine and Forster, 1999). Two of the fault zone models are representative of the faulted gneissic rocks and one is representative of faulted Silver Plume quartz monzonite.

In each DFN model the fracture apertures were initially set to a constant value in each model domain. In order to calculate fracture volume (V_f) and total potential porosity (n_P) , estimates of aperture (b), fracture intensity (I_f), and model domain volume (V_m) are the only parameters needed. V_f and n_P were calculated using:

$$V_f = b \times I_f \times V_m \tag{1}$$

and
$$n_p = \frac{V_f}{V_{c.}} \tag{2}$$

 V_f and V_m have the dimensions of [L³], b has the dimension of [L], and P_{32} has the dimension of [L²/L³] where L is length. In making these calculations we assume two end members and one intermediate case for constant apertures that range from $1000\mu m$ (or 1mm) to $100\mu m$ to $10\mu m$.

Estimates of Potential Fracture Network Permeability

Potential fracture network permeability, or potential permeability, was estimated using the same calibrated DFN models that were constructed for potential porosity estimates using the same assumptions for the definition of this parameter. Flow simulation results can be used to estimate DFN model domain sizes for bulk equivalent potential permeabilities, potential permeability anisotropy and the relative magnitudes of potential permeability at single locations and from one location to another. The results can also be used as input into other simulators, such as a watershed model, for estimating infiltration and recharge into the bedrock aquifer.

Approach

Potential permeabilities are calculated by simulating water flow at standard temperature and pressure in the fracture models using the three-dimensional finite element code MaficTM (Miller et al., 1995). Use of MaficTM assumes that all fractures act as parallel, smooth-walled conduits with rectangular cross sections. This assumption is commonly made when simulating fluid flow through discrete fracture networks (Snow, 1968; Witherspoon et al., 1980; Long et al., 1982). Each element in the mesh is assigned a fracture transmissivity, T_f , that can be directly related to fracture aperture a:

$$T_f = \frac{a^3 \rho g}{12 \mu} \tag{3}$$

where T_f is fracture transmissivity $[L^2/T]$, a is aperture [L], ρ is the fluid density $[M/L^3]$, g is the acceleration due to gravity $[L/T^2]$, and μ is the dynamic fluid viscosity [M/LT] (M=mass, L=length, T=time). Single values for transmissivity and aperture are assigned to each individual fracture in each DFN model. Transmissivities used in this study range from 1×10^{-9} m²/s to 1×10^{-3} m²/s (corresponding to apertures from $10 \mu m$ to $1000 \mu m$). Although the simulated absolute values of potential permeability are completely dependent on the chosen aperture and transmissivity distributions that are not constrained by site-specific hydraulic data, they do represent a reasonable estimate of the architecture of each fracture network loosely conditioned to the aperture and transmissivity data described above in the potential porosity section. The architectural elements include the primary rock fabric elements measured in the field (e.g., position and derived intensity, orientation, length, and terminations). Moreover, because each of the DFN models were constructed with the same constant aperture and transmissivity distributions, the simulation results are also excellent measures of the relative potential permeability and potential permeability anisotropy from one DFN model or locality to another.

The steady-state distribution of hydraulic head is computed using MaficTM at each node within each DFN model and the volumetric fluid flux is computed along each external boundary. A form of Darcy's law for steady-state water flow is solved subject to the specified boundary conditions using the Galerkin finite element method. Two-dimensional triangular elements are constructed within each fracture plane that comprise the fully three-dimensional DFN models using MeshMakerTM. Interested readers are referred to Miller et al. (1995) and Dershowitz et al. (1996) for more complete descriptions of MeshMakerTM and MaficTM.

Bulk and directional permeabilities are calculated using the results of numerical, one-dimensional flow experiments. Boundary conditions are applied to each model cube as illustrated in Figure 8. DFN model domain sizes were chosen to represent outcrop scale potential permeabilities and to allow for computational efficiency. The results are valid only for the length and volume scales modeled, where the larger scale DFN models represent better estimates of bulk potential permeability. This is because the longest fractures are smaller than larger domain sizes and thus single, through-going fractures that are common at the smaller domain sizes do not dominate the flow. Also note that simulating potential permeability in only three directions does not give a complete view of anisotropy. This approach is used as a first estimate to evaluate whether anisotropy is large enough to warrant further simulations in additional directions.

One-dimensional flow was simulated in three mutually-perpendicular, real-space directions in each DFN model cube (i.e., north to south, east to west, and top to bottom or up and down). In each simulation, a uniform hydraulic head gradient (dh = 0.1m for example representing 100m head drop across 1km horizontal distance) was applied across a pair of opposing DFN model faces for each flow direction. Uniform values of hydraulic head are specified on each pair of opposing DFN model faces and a zero flux condition was specified on the remaining four faces (Figure 8). The total volumetric flux computed between the two opposing faces is used to compute the equivalent bulk potential permeability, k_P , for each full model domain, in each direction (Figure 8). Equivalent bulk potential permeabilities were calculated in each direction using Darcy's law:

$$k_p = \frac{\mu}{\rho g} \frac{Q}{IA} \tag{4}$$

where Q is the simulated volumetric flow rate output $[L^3/T]$, I [dimensionless] is the specified hydraulic gradient, A [L^2] is the specified cross sectional area across which the discharge, Q, flows, k_P is the calculated permeability $[L^2]$, ρ is the fluid density $[M/L^3]$, g is the acceleration due to gravity $[L/T^2]$, and μ is the fluid dynamic viscosity [M/LT].

References Cited

Abelin, H., Birgersson, L., Gidlund, J., and Neretnieks, I., 1991, A large-scale flow and tracer experiment in granite: 1. Experimental design and flow distribution: Water Resources Research, V. 27, n. 12, p. 3107-3117.

Allmendinger, R. W., 1995, Stereonet: Orientation data analysis computer code: Absoft, Corporation.

Anna, L.O., Wallman, P., 1997, Characterizing the fracture network at Yucca Mountain, Nevada: Part 2. Numerical simulation of flow in a three-dimensional discrete fracture network: in Hoak, T.E., Klawitter, A.L. and Blomquist, P.K. (eds) Fractured Reservoirs: Characterization and Modeling Guidebook 1997: Rocky Mountain Association of Geologists, p. 199-207.

Barton, C. C., 1996, Characterizing bedrock fractures in outcrop for studies of ground-water hydrology; an example from Mirror Lake, Grafton County, New Hampshire: Water-Resources Investigations - U. S. Geological Survey, Report: WRI 94-4015, p.81-87.

Bryant, B., Offield, T.W., and Schmidt, W., 1975, Relations between thermal, photographic, and topographic linears and mapped and measured structures in a Precambrian terrane in Colorado: U.S. Geological Survey, Journal of Research, v. 3, n. 3, p. 295-303.

Caine, J.S., 2001, Fracture Network, Fault Zone, and Geologic Data Collected from the Turkey Creek Watershed, Colorado Rocky Mountain Front Range: U.S. Geological Survey, Open File Report 01-416 (http://geology.cr.usgs.gov/pub/open-file-reports/ofr-01-0416/), 46 p.

- Caine, J. S. and Forster, C. B., 1999, Fault zone architecture and fluid flow: Insights from field data and numerical modeling: in Haneberg, W.C., Mozley, P. S., Moore, J. C. and Goodwin, L. B., editors, Faults and subsurface fluid flow in the shallow crust: AGU Geophysical Monograph 113, p. 101-127.
- Dershowitz, W., Lee, G., Geier, J., Foxford, T., LaPointe, P., Thomas, A., 1996, FracManTM: Interactive discrete feature data analysis, geometric modeling, and exploration simulation: User Documentation, Version 2.5, Golder Associates, Inc., Redman, Washington.
- Hicks, J. R., 1987, Hydrogeology of igneous and metamorphic rocks in the Shaffers Crossing area and vicinity near Conifer, Colorado: Master's Thesis, Colorado School of Mines, Golden, Colorado, 174 p.
- Hsieh, P. A., and Shapiro, A. M., 1996, Hydraulic characteristics of fractured bedrock underlying the FSE well field at the Mirror Lake site, Grafton County, New Hampshire: Water-Resources Investigations U. S. Geological Survey, Report: WRI 94-4015, p.127-130.
- Jones, M. A., Pringle, A. B., Fulton, I. M. and O'neill, S., 1999, Discrete fracture network modeling applied to groundwater resource exploitation in southwest Ireland, in: McCaffrey, K. J. W., Lonergan, L. and Wilkinson, J. J. editors Fractures, fluid flow and mineralization, Geological Society, London, Special Publications, 155, p. 83-103.
- Long, J. C. S., Remer, J. S., Wilson, C. R., Witherspoon, P. A., 1982, Porous media equivalents for networks of discontinuous fractures: Water Resources Research, v. 18, n. 3, p. 645-658.
- Miller, I., Lee, G., Dershowitz, W. and Sharp, G., MaficTM, 1995, Matrix / fracture interaction code with solute transport: User Documentation, Version b1.5, Golder Associates, Inc., Redman, Washington.
- Paillet, F, L. and Pedler, W. H., 1996, Integrated borehole logging methods for wellhead protection applications: Engineering Geology, v.42, n.2-3, p.155-165.
- Priest, S., 1993, Discontinuity analysis for rock engineering: Chapman and Hall, 473 p.
- Snow, D. T., 1968, Rock fracture spacings, openings, and porosities: Journal of Soil Mechanics Found. Div. American Society of Civil Engineering, v. 94 (SM1), p. 73-91.
- Sweetkind, D. S., Anna, L. O., Williams-Stroud, S. C. and Coe, J. A., 1997, Characterizing the fracture network at Yucca Mountain, Nevada: Part 1. Integration of field data for numerical simulations: in Hoak, T. E., Klawitter, A. L. and Blomquist, P. K. (eds) Fractured Reservoirs: Characterization and Modeling Guidebook 1997: Rocky Mountain Association of Geologists, p. 185-197.
- Taylor, W. L., Pollard, D. D. and Aydin, A., 1999, Fluid flow in discrete joint sets: Field observations and numerical simulations: Journal of Geophysical Research, v. 104, n. B12, p. 28,983-29,006.
- Terzaghi, R.D., 1965, Sources of error in joint surveys: Geotechnique v. 15, p. 287-304.
- Tiedeman, C. R., Goode, D. J., Hsieh, P. A., 1998 , Characterizing a groundwater basin in a New England mountain and valley terrain: Groundwater, v.36, n.4, p.611-620.
- Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture: Water Resources Research, v. 16, n. 6, p. 1016-1024.

TABLE DR1. TCW FRACTURE SET INPUT DATA, TRACE LENGTH AND INTENSITY SIMULATION RESULTS

Abbreviations: no = number, disp = dispersion, st dev = standard deviation, min = minimum, max = maximum, term = fracture termination percent, K/S = Kolgogorov-Smirnov statistic, chi-sqr = Chi-Squared statistic, SL = sacn line, P10 = fracture intensity or number of fractures per unit line length, Qtz=Quartz, F-spar=Feldspar, Bio=Biotite

	<i>-</i>								Ū	,		• ′				
285S set	(Foli	ated Quartz, orient	-	ar, Biot ace len)	eimul	atad rad	dii statistics	eimulat	ion fit (%)	SL1	SL2	SL3	
no	n	mean disp			-		term			distribution	K/S	chi-sqr	P10	P10	P10	
1	18	169/56 100	1.27	0.58	0.5	2.1	44.4		0.54	normal	96	29	1.5	0.28	0	-
2	16	028/72 23	2.24	2.18	0.6	6.8	50	0.85	0.73	log norm	41	14	1.75	0.97	0	
3	15	007/05 66	2.41	0.99	0.5	3.8	26.7		2.41	normal	96	79	1.13	0	0	
4	12	259/69 17	2.11	1.08	0.6	4.2	66.6		0.82	normal	95	92	0.08	1.52	0	
5	15	320/47 18	1.85	1.16	0.4	5	40	0.86	0.95	log norm	50	75	0.53	0.55	1.06	D40 CUM
	76	= TOTAL n						AVERA	AGE SIN	IULATION FIT	75.6	57.8	5.0	3.3	1.1 9.4	P10 SUM TOTAL P10
															3.4	TOTALTTO
285N	(Foli	ated Quartz,	Feldsp	ar, Biot	ite G	neiss)									
set		orient	raw tra	ace len	gth d	ata		simul	ated rad	dii statistics	simulat	ion fit (%)	SL4	SL5	SL7	
no	n	mean disp								distribution	K/S	chi-sqr	P10	P10	P10	_
1	31	360/05 81	4.41	2.59	1	8	33.3		6.35	log norm	94	48	0.97	0	0	
2	30 9	245/25 22 111/30 24	1.51 3.26	1.09 2.21	0.3	5.2 7.1	43.3	0.44 2.58	0.71 1.93	normal normal	80 96	50 84	0	0.55 2.22	0.99	
3	70	= TOTAL n	3.20	2.21	0.5	7.1				MULATION FIT		60.7	1.0	2.22	-	P10 SUM
	, ,	- IOIAL II					,	A V L I V	TOL OIII	JOEANON III	30.0	00.1	1.0	2.0	4.7	TOTAL P10
LAMI	BERT	(Foliated Qu					neiss									
set		orient		ace len	-					dii statistics		ion fit (%)	SL1	SL2	SL3	
no	n 47		mean					mean		distribution	K/S	chi-sqr	P10	P10	P10	-
1 2	47 21	317/08 73 252/56 50	2.52 1.31	1.68 1.12	0.4	6.5 4.3	46.8 38.1	2.08 0.85	2.79 1.03	log norm log norm	95 84	97 32	3.31 0.21	0 0.74	0 7.05	
3	12	230/19 13	1.14	0.42	0.2	1.7	66.7		0.39	uniform	100	97	0.21	1.27	0	
4	10	240/12 16	3.9	1.39	2	6.7	30	2.57	3.58	log norm	99	91	0.14	0.85	0	
	90	= TOTAL n								NULATION FIT		79.3	3.7	2.9		P10 SUM
															13.6	TOTAL P10
		DE 41/ E 40T	<i>-</i>													
	AULI	PEAK EAST orient	•	ed Qua ace len	,		ar, Bı		,	dii statistics	cimulat	ion fit (%)	SL6	SL9	SL10	
set no	n		mean		-		term			distribution	K/S	chi-sqr	P10	P10	P10	
1	6	332/51 100	1.58	0.78	0.6	2.9	83.4	1.05	0.711	uniform	100	77	0.56	0	0	-
2	25	249/74 33	2.84	1.85	0.7	6.8	56	2.43	1.38	log norm	99	55	0.94	0.38	2.97	
3	36	165/22 42	2.54	1.85	0.7	8.1	33.4	1.92	2.93	log norm	98	35	1.69	0.75	0	
	67	= TOTAL n						AVER/	AGE SIN	IULATION FIT	99.0	55.7	3.2	1.1	3.0	P10 SUM
															7.3	TOTAL P10
HARI	RING	ΓΟΝ (Silver P	lume C	uartz l	Vlonze	onite))									
set		orient		ace len				simul	ated rad	dii statistics	simulat	ion fit (%)	SL6	SL10	SL11	
no	n		mean				term			distribution	K/S	chi-sqr	P10	P10	P10	_
1a	85	300/04 48	2.3	1.16	0.6	6.2	44	1.48	0.9	log norm	98	79	0	0	0.93	
1b 2	13	302/04 68 154/85 36	11.5 4.35	5.27 2.5	7.1 1	29 11	31	5.75 2.38	5.27	log norm	100	85 77	0	0 1.16	0.4 0.7	
3	38 57	210/09 16	2.22	1.11	0.6	5.8	45 33	1.3	3.65 1.11	log norm log norm	90 100	95	0.8 1.85	0	0.7	
Ü		= TOTAL n			0.0	0.0				NULATION FIT		84.0	2.7	1.2	2.0	P10 SUM
															5.8	TOTAL P10
				_												
		ilver Plume C				ata		cimud	atad =c	dii statistics	cimulet	ion fit /0/ \	Q1 7	SL8	SL9	
set no	n	orient mean disp					term			distribution	K/S	chi-sqr	P10	P10	P10	
1	39	047/08 24	2.43	1.52	0.6	6	44	1.7	2.8	log norm	99	47	0	0	0.87	-
2	30	224/64 27	2.57	1.51	0.8	7	37	1.45	2.1	log norm	95	93	1.8	0.14	0.13	
3	39	317/00 40	2.85	2.15	0.4	9.7	46	2.1	3.4	log norm	91	60	0	1.18	0.7	
4	42	093/07 19	2.5	1.74	0.3	8.9	38	1.9	2.1	log norm	93	79	0	0.56	0.33	
	150	= TOTAL n						AVERA	AGE SIN	IULATION FIT	94.5	69.8	1.8	1.9		P10 SUM
															5.7	TOTAL P10
GRF	EN (S	ilver Plume C	Quartz I	Monzor	nite)											
set	,5	orient		ace len		ata		simul	ated rad	dii statistics	simulat	ion fit (%)	SL5	SL6	SL7	
no	n	mean disp			•		term			distribution	K/S		P10	P10	P10	_
1a	46	179/04 9	2.59	1.9	0.4	8	26	1.8	2.6	log norm	83	61	0.17	0.2	0.13	
1b	4	006/05 74	17.63	8.76	10	30	0	10	9	log norm	100	100	0	0	0	
2	23	236/65 21 256/03 9	3.55 2.92	3.3 2.3	0.7 0.5	16 12	30 51	2.2 2	3.5 3.8	log norm	88 93	89 52	1.67	0.27	0.07 1.13	
J		256/03 9 = TOTAL n	2.92	۷.۵	0.5	12	51			log norm IULATION FIT		52 75.5	0.5 2.3	0.87 1.3		P10 SUM
	.50	. O I AL II					,		.52 5/11		01.0	. 0.0				TOTAL P10

TABLE DR1. TCW FRACTURE SET INPUT DATA, TRACE LENGTH AND INTENSITY SIMULATION RESULTS CONTINUED

	CTION		I-PAI					ONE (•	•	_	•		,	dspar	, Biotite Gneiss)
set		orient			ace len	•							ion fit (%)		SL2		
no	n	mean	_	mean							distribution	K/S	chi-sqr	P10	P10	_	
1 2	28	274/16	11	0.56	0.57 0.52	0.1	2.3	89	0.24	0.36 0.18	log norm	94 91	53 50	28.2 2	0 10.8		
ew	14	160/62 rid 3 belo		0.83	0.52	0.2	1.8	93	0.37	0.16	normal	91	50	2	10.6		
ew	_	TOTA							۸VED/	AGE SIN	NULATION FIT	92.5	51.5	30.2	10.8	P10 S	NIIM
	42	- 1012	\L II					,	AVENA	AGE SIN	IOLATION FIT	32.3	31.3	30.2	10.0	FIUS	OUVI
	CTION		I-PAI					ONE (lspar, l	Biotite Gneiss)
set		orient			ace len	•					dii statistics		ion fit (%)		SL2		
no	n	mean		mean						stdev	distribution	K/S	chi-sqr	P10	P10	-	
1	9	226/05	15	0.46	0.51	0.2	1.8	100	0.2	0.29	log norm	91	61	8	1		
2	15	171/68	18	0.63	0.6	0.1			0.59	0.54	uniform	93	65	14	0		
3	13	049/46	18	0.58	0.35	0.2	1.5	92.3	0.61	0.35	normal	100	78	10.1	3		
ew	_	rid 3 beld = TOT							AVED /	ACE SIN	IULATION FIT	94.7	68.0	32.1	4.0	P10 S	SLIM
	31	- 1012	(L II					,	AVERA	AGE SIN	IULATION FIT	94.7	00.0	32.1			AL P10
															30.1	1012	AL F IV
JUN	JUNCTION RANCH-PARADISE HILLS FAULT ZONE GRID 3 (Brittlely Deformed and Highly Altered Quartz, Feldspar, Biotite Gneiss)																
set	the state of the s																
no	n	mean	disp	mean	stdev	min	max	term	mean	stdev	distribution	K/S	chi-sqr	P10	P10		
ew	16	357/08	20	0.66	0.64	0.1	2.1	87.6	0.66	0.64	normal	94	39	14.9	1	_	
2	10	182/65	9.2	0.3	0.14	0.1	0.5	100	0.3	0.14	normal	99	100	2	8		
3	16	285/44	18	0.93	8.0	0.1	2.7	81.3	0.28	0.23	normal	94	70	3	13		
	42	= TOTA	\L n						AVER/	AGE SIN	JULATION FIT	95.7	69.7	19.9	22.0	P10 S	NUM
															41.9	TOTA	AL P10
															41.9	TOTA	AL P10
601	uren.	ACDEN	DADI	Z FALII	T 70N	-	ID 4 /	D.::441.a	u. Def				:4d (N- F-			
	NIFER-		PARI					Brittle		ormed a	and Altered Qt				spar, I	Bio Gn	
set		orient		raw tra	ace len	gth d	lata `		simul	ormed a	and Altered Qt dii statistics	simulat	ion fit (%)	SL1	spar, I	Bio Gn SL3	
set no	n	orient mean	disp	raw tra mean	ace len stdev	gth d	l ata max	term	simul mean	ormed a ated rad stdev	and Altered Qt dii statistics distribution	simulat K/S	ion fit (%) chi-sqr	SL1 P10	spar, I SL2 P10	Bio Gn SL3 P10	
set no 1	n 8	orient mean 346/26	disp 53	raw tra mean 0.6	stdev 0.5	gth d min 0.2	lata max 1.6	term 100	simul mean 0.6	ormed a ated rac stdev 0.5	and Altered Qt dii statistics distribution normal	simulat K/S 96	ion fit (%) chi-sqr 77	SL1 P10 4.1	spar, I SL2 P10	SL3 P10 0.8	
set no 1 2	n 8 10	orient mean 346/26 177/23	disp 53 17	nean 0.6 0.59	stdev 0.5 1.17	gth d min 0.2 0.1	1.6 3.9	term 100 90	simul mean 0.6 0.28	ormed a ated rac stdev 0.5 0.725	and Altered Qt dii statistics distribution normal log norm	simulat K/S 96 99	chi-sqr 77 36	SL1 P10 4.1 4.6	spar, E SL2 P10 0 0.8	SL3 P10 0.8 0.5	
set no 1 2 3	n 8 10 18	orient mean 346/26 177/23 218/34	disp 53 17 19	nean 0.6 0.59 0.55	oce len stdev 0.5 1.17 0.54	9th d min 0.2 0.1 0.1	1.6 3.9 1.8	term 100 90 100	simul mean 0.6 0.28 0.22	ormed a stdev 0.5 0.725 0.3	and Altered Qt dii statistics distribution normal log norm log norm	simulat K / S 96 99 91	ion fit (%) chi-sqr 77 36 70	SL1 P10 4.1 4.6 7.7	spar, E SL2 P10 0 0.8 2.4	Bio Gn SL3 P10 0.8 0.5 0.5	
set no 1 2 3 4	n 8 10 18 11	orient mean 346/26 177/23 218/34 264/43	53 17 19 51	nean 0.6 0.59 0.55 1.39	o.5 1.17 0.54 0.79	0.2 0.1 0.1 0.3	1.6 3.9 1.8 2.5	term 100 90 100 100	simul mean 0.6 0.28 0.22 1.31	ormed a ated rac stdev 0.5 0.725 0.3 0.764	and Altered Qt dii statistics distribution normal log norm log norm normal	simulat K/S 96 99	chi-sqr 77 36	SL1 P10 4.1 4.6 7.7 0.5	spar, E SL2 P10 0 0.8	SL3 P10 0.8 0.5	
set no 1 2 3	n 8 10 18	orient mean 346/26 177/23 218/34	disp 53 17 19 51 48	nean 0.6 0.59 0.55	oce len stdev 0.5 1.17 0.54	9th d min 0.2 0.1 0.1	1.6 3.9 1.8	term 100 90 100 100 100	simul mean 0.6 0.28 0.22 1.31 0.25	0.725 0.764 0.06	and Altered Qt dii statistics distribution normal log norm log norm	96 99 91 83 100	ion fit (%) chi-sqr 77 36 70 54	SL1 P10 4.1 4.6 7.7	Spar, I SL2 P10 0 0.8 2.4 8.1	SL3 P10 0.8 0.5 0.5 0.5	
set no 1 2 3 4	8 10 18 11 3	orient mean 346/26 177/23 218/34 264/43 033/41	disp 53 17 19 51 48	nean 0.6 0.59 0.55 1.39	o.5 1.17 0.54 0.79	0.2 0.1 0.1 0.3	1.6 3.9 1.8 2.5	term 100 90 100 100 100	simul mean 0.6 0.28 0.22 1.31 0.25	0.725 0.764 0.06	and Altered Qt dii statistics distribution normal log norm normal log norm	96 99 91 83 100	ion fit (%) chi-sqr 77 36 70 54 92	SL1 P10 4.1 4.6 7.7 0.5 0.5	Spar, E SL2 P10 0 0.8 2.4 8.1	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2	eiss) -
set no 1 2 3 4	8 10 18 11 3	orient mean 346/26 177/23 218/34 264/43 033/41	disp 53 17 19 51 48	nean 0.6 0.59 0.55 1.39	o.5 1.17 0.54 0.79	0.2 0.1 0.1 0.3	1.6 3.9 1.8 2.5	term 100 90 100 100 100	simul mean 0.6 0.28 0.22 1.31 0.25	0.725 0.764 0.06	and Altered Qt dii statistics distribution normal log norm normal log norm	96 99 91 83 100	ion fit (%) chi-sqr 77 36 70 54 92	SL1 P10 4.1 4.6 7.7 0.5 0.5	Spar, E SL2 P10 0 0.8 2.4 8.1	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2	eiss) - P10 SUM
set no 1 2 3 4 5	8 10 18 11 3 50	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	53 17 19 51 48 L n	nean 0.6 0.59 0.55 1.39 0.27	0.5 1.17 0.54 0.79 0.15	0.2 0.1 0.1 0.3 0.1	1.6 3.9 1.8 2.5 0.4	term 100 90 100 100	simul mean 0.6 0.28 0.22 1.31 0.25 AVERA	ormed a ated rac stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Quality statistics distribution normal log norm normal log norm normal log norm	simulat K/S 96 99 91 83 100 93.8	ion fit (%) chi-sqr 77 36 70 54 92 65.8	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4	Spar, E SL2 P10 0 0.8 2.4 8.1 0 3.2	SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4	eiss) - P10 SUM TOTAL P10
set no 1 2 3 4 5	8 10 18 11 3 50	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	53 17 19 51 48 L n	raw tra mean 0.6 0.59 0.55 1.39 0.27	0.5 1.17 0.54 0.79 0.15	9th d min 0.2 0.1 0.1 0.3 0.1	1.6 3.9 1.8 2.5 0.4	term 100 90 100 100	simul mean 0.6 0.28 0.22 1.31 0.25 AVERA	ormed : ated rac stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Quality statistics distribution normal log norm normal log norm normal log norm AULATION FIT	simulat K/S 96 99 91 83 100 93.8	ion fit (%) chi-sqr 77 36 70 54 92 65.8	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4	Spar, E SL2 P10 0 0.8 2.4 8.1 0 3.2	SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5	8 10 18 11 3 50	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	disp 53 17 19 51 48 L n	nean 0.6 0.59 0.55 1.39 0.27	0.5 1.17 0.54 0.79 0.15	9th d min 0.2 0.1 0.1 0.3 0.1	1.6 3.9 1.8 2.5 0.4	term 100 90 100 100 100	simul mean 0.6 0.28 0.22 1.31 0.25 AVERA D 2 NS simul	ormed a ated rac stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Qt dii statistics distribution normal log norm normal log norm MULATION FIT	96 99 91 83 100 93.8	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qtion fit (%)	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4	Spar, E SL2 P10 0 0.8 2.4 8.1 0 3.2	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5	n 8 10 18 11 3 50	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	disp 53 17 19 51 48 L n	nean 0.6 0.59 0.55 1.39 0.27	0.5 1.17 0.54 0.79 0.15	9th d min 0.2 0.1 0.3 0.1	1.6 3.9 1.8 2.5 0.4	term 100 90 100 100 100 v GRII	simul mean 0.6 0.28 0.22 1.31 0.25 AVERA	ormed a stdev 70.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Qt dii statistics distribution normal log norm log norm normal log norm MULATION FIT	96 99 91 83 100 93.8 ned and simulat	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10	spar, I SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4 e and C SLNS P10	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 5 CON set no 1	n 8 10 18 11 3 50 NIFER-	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	disp 53 17 19 51 48 L n	nean 0.6 0.59 0.55 1.39 0.27 K FAUL raw tramean 0.6	0.5 1.17 0.54 0.79 0.15	9th d min 0.2 0.1 0.1 0.3 0.1	1.6 3.9 1.8 2.5 0.4	term 100 90 100 100 100 v GRII term 100	mean 0.6 0.28 0.22 1.31 0.25 AVERA D 2 NS simul mean 0.6	0.5 0.725 0.3 0.76 0.06 0.06 0.06 0.06 0.06 0.06 0.06	and Altered Quality statistics distribution normal log norm normal log norm normal log norm MULATION FIT stittlely Deform distribution normal	simulat K/S 96 99 91 83 100 93.8 ned and simulat K/S 96	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1	Spar, E SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4 s and 0 SLNS P10 0.8	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 5 CON set no 1 2	n 8 10 18 11 3 50 NIFER- n 8 10	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA	disp 53 17 19 51 48 L n PARI disp 53 17	0.6 0.59 0.55 1.39 0.27 K FAUL raw tra mean 0.6 0.59	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17	0.2 0.1 0.3 0.1 E GR gth d min 0.2 0.1	1.6 3.9 1.8 2.5 0.4 LID 1 v lata max 1.6 3.9	term 100 90 100 100 100 v GRII term 100 90	mean 0.6 0.28 0.22 1.31 0.25 AVERA D 2 NS simul mean 0.6 0.28	0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Qt dii statistics distribution normal log norm log norm normal log norm dilLATION FIT drittlely Deform dii statistics distribution normal log norm	simulat K / S 96 99 91 83 100 93.8 ned and simulat K / S 96 99 91 83 100 93.8	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6	Spar, E SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8	3io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4 s and 0 SLNS P10 0.8 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 CON set no 1 2 3	n 8 10 18 11 3 50 NIFER- n 8 10 18	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA -ASPEN orient mean 346/26 177/23 218/34	53 17 19 51 48 L n PARI disp 53 17	nean 0.6 0.59 0.27	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54	9th d min 0.2 0.1 0.3 0.1 0.3 0.1 E GR 9th d min 0.2 0.1 0.1	1.6 3.9 1.8 2.5 0.4 1.0 1 v lata max 1.6 3.9 1.8	term 100 90 100 100 100 term 100 90 100	mean 0.6 0.25 AVERA mean 0.5 mean 0.6 mean 0.6 0.28 0.22 0.22 mean 0.6 0.28 0.22	stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Qt dii statistics distribution normal log norm normal log norm MULATION FIT drittlely Deform dii statistics distribution normal log norm log norm	### Simulat K / S 96 99 91 83 100 93.8 med and simulat K / S 96 99 91	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7	Spar, I E SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 s.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3io Gn SL3 P10 0.8 0.5 0.5 0.2 1.8 21.4 SLNS P10 0.8 0.5 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 CON set no 1 2 3 4 4	n 8 10 18 11 3 50 NIFER- n 8 10 18 11	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA -ASPEN orient mean 346/26 177/23 218/34 264/43	53 17 19 51 48 AL n PARH disp 53 17 19 51	0.6 0.59 0.55 1.39 0.27 K FAUL raw tramean 0.6 0.59 0.55 1.39	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54 0.79	gth d min 0.2 0.1 0.3 0.1 0.3 0.1 E GR gth d min 0.2 0.1 0.1 0.3		term 100 90 100 100 100 100 term 100 90 100 100	mean 0.6 0.28 0.22 1.31 0.25 AVERA	ormed a stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM	and Altered Quality statistics distribution normal log norm normal log norm normal log norm distribution statistics distribution normal log norm log norm normal	simulat K/S 96 99 91 83 100 93.8 med and simulat K/S 96 99 91 83	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5	SL2 P10 0 0.8 8.1 0 3.2 Example SL2 P10 0 0.8 8.1 0 3.2 Example SL2 P10 0 0.8 8.4 8.1 0 0.8 8.4 8.1 0 0.8 8.4 8.1 0 0.8 8.2 8.1 0 0.8 8.2 8.1 0 0.8 8.2 8.1 8.1 0 0.8 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	33io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4 21.4 21.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 CON set no 1 2 3 4 5 5	n 8 10 18 11 3 50 NIFER- n 8 10 18 11 3	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA ASPEN orient mean 346/26 177/23 218/34 264/43 033/41	53 17 19 51 48 L. n PARI disp 53 17 19 51 48	nean 0.6 0.59 0.27	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54 0.79 0.15	E GR min 0.2 0.1 0.1 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		term 100 90 100 100 100 100 100 100 100 100	0.6 0.28 0.22 1.31 0.25 AVERA D 2 NS simul mean 0.6 0.28 0.22 1.31 0.25	ated rad stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM SET (Bated rad stdev 0.5 0.725 0.3 0.764 0.06	and Altered Qtail statistics distribution normal log norm normal log norm MULATION FIT distribution normal log norm din statistics distribution normal log norm log norm log norm normal	simulat	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54 92	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5 0.5	SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 8.1 0 3.2	83io Gn SL3 P10 0.8 0.5 0.5 0.5 0.2 1.8 21.4 21.4 2 and C SLNS P10 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 CON set no 1 2 3 4 4	n 8 10 18 11 3 50 NIFER- n 8 10 18 11 3 19	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA ASPEN orient mean 346/26 177/23 218/34 264/43 033/41 067/22	53 17 19 51 48 L. n PARI disp 53 17 19 51 48 63	0.6 0.59 0.55 1.39 0.27 K FAUL raw tramean 0.6 0.59 0.55 1.39	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54 0.79	gth d min 0.2 0.1 0.3 0.1 0.3 0.1 E GR gth d min 0.2 0.1 0.1 0.3		term 100 90 100 100 100 100 100 100 100 100	0.6 0.28 0.22 1.31 0.25 AVERA 0.6 0.28 0.22 1.31 0.6 0.28 0.22 1.31 0.25 0.82	stdev 0.5 0.725 0.3 0.764 0.06 ated rac stdev 0.5 0.725 0.3 0.764 0.06 0.528	and Altered Qti statistics distribution normal log norm normal log norm MULATION FIT stittlely Deformation statistics distribution normal log norm normal log norm normal log norm normal log norm normal	simulat K/S 96 99 91 83 100 93.8 med and simulat K/S 96 99 91 83 100 79	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54 92 92	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5 0.5 0.5 0.5	Spar, F. SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 8.2 4 8.1 0 0 0.8	83io Gn SL3 P10 0.8 0.5 0.5 0.2 1.8 21.4 21.4 21.4 0.8 0.5 0.5 0.5 0.5 0.2 21.4 0.8 0.5 0.5 0.5 0.2 21.4 0.8 0.5 0.5 0.5 0.5 0.2 21.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 5 CON set no 1 2 3 4 5 5	n 8 10 18 11 3 50 NIFER- n 8 10 18 11 3	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA ASPEN orient mean 346/26 177/23 218/34 264/43 033/41	53 17 19 51 48 L. n PARI disp 53 17 19 51 48 63	nean 0.6 0.59 0.27	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54 0.79 0.15	E GR min 0.2 0.1 0.1 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		term 100 90 100 100 100 100 100 100 100 100	0.6 0.28 0.22 1.31 0.25 AVERA 0.6 0.28 0.22 1.31 0.6 0.28 0.22 1.31 0.25 0.82	stdev 0.5 0.725 0.3 0.764 0.06 ated rac stdev 0.5 0.725 0.3 0.764 0.06 0.528	and Altered Qtail statistics distribution normal log norm normal log norm MULATION FIT distribution normal log norm din statistics distribution normal log norm log norm log norm normal	simulat K/S 96 99 91 83 100 93.8 med and simulat K/S 96 99 91 83 100 79	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54 92	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5 0.5	SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 8.1 0 3.2	0.8 and C SLNS P10 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) P10 SUM TOTAL P10 Otz, F-spar, Bio Gneis
set no 1 2 3 4 5 5 CON set no 1 2 3 4 5 5	n 8 10 18 11 3 50 NIFER- n 8 10 18 11 3 19	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA ASPEN orient mean 346/26 177/23 218/34 264/43 033/41 067/22	53 17 19 51 48 L. n PARI disp 53 17 19 51 48 63	nean 0.6 0.59 0.27	0.5 1.17 0.54 0.79 0.15 T ZON ace len stdev 0.5 1.17 0.54 0.79 0.15	E GR min 0.2 0.1 0.1 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		term 100 90 100 100 100 100 100 100 100 100	0.6 0.28 0.22 1.31 0.25 AVERA 0.6 0.28 0.22 1.31 0.6 0.28 0.22 1.31 0.25 0.82	stdev 0.5 0.725 0.3 0.764 0.06 ated rac stdev 0.5 0.725 0.3 0.764 0.06 0.528	and Altered Qti statistics distribution normal log norm normal log norm MULATION FIT stittlely Deformation statistics distribution normal log norm normal log norm normal log norm normal log norm normal	simulat K/S 96 99 91 83 100 93.8 med and simulat K/S 96 99 91 83 100 79	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54 92 92	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5 0.5 0.5 0.5	Spar, F. SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 8.2 4 8.1 0 0 0.8	0.8 and C SLNS P10 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) - P10 SUM TOTAL P10 Qtz, F-spar, Bio Gneis
set no 1 2 3 4 5 5 CON set no 1 2 3 4 5 5	8 10 18 11 3 50 WIFER- 8 10 18 11 3 19 69	orient mean 346/26 177/23 218/34 264/43 033/41 = TOTA ASPEN orient mean 346/26 177/23 218/34 264/43 033/41 067/22	53 17 19 51 48 L. n PARP 53 17 19 51 48 63 L. n	raw tramean 0.6 0.59 0.55 1.39 0.27 K FAUL raw tramean 0.6 0.59 0.55 1.39 0.27 1.07	0.5 1.17 0.54 0.79 0.15 1.17 0.54 0.79 0.15 0.54 0.79 0.15 0.53	egth d min 0.2 0.1 0.3 0.1 E GR ggth d min 0.2 0.1 0.1 0.3 0.1	ID 1 v ata max 1.6 3.9 1.8 2.5 0.4 ID 1 v 2 1.8 2.5 0.4 2.5 2.4	term 100 90 100 100 100 100 100 100 100 100	simul mean 0.6 0.28 0.22 1.31 0.25 0.82 0.22 1.31 0.25 0.82 0.82 0.82 0.82 0.82	stdev 0.5 0.725 0.3 0.764 0.06 AGE SIM stdev 0.5 0.725 0.3 0.725 0.3 0.764 0.06 0.528 AGE SIM	and Altered Qti statistics distribution normal log norm normal log norm MULATION FIT stittlely Deformation statistics distribution normal log norm normal log norm normal log norm normal log norm normal	simulat K/S 96 99 91 83 100 93.8 med and simulat K/S 96 99 91 83 100 79 91.3	ion fit (%) chi-sqr 77 36 70 54 92 65.8 Altered Qt ion fit (%) chi-sqr 77 36 70 54 92 92	SL1 P10 4.1 4.6 7.7 0.5 0.5 16.4 Ez Mon: SL1 P10 4.1 4.6 7.7 0.5 0.5 0.5 0.5	Spar, F. SL2 P10 0 0.8 2.4 8.1 0 3.2 zonite SL2 P10 0 0.8 8.2 4 8.1 0 0 0.8	0.8 and C SLNS P10 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	eiss) P10 SUM TOTAL P10 Otz, F-spar, Bio Gneis

TABLE DR2. TCW DISCRETE FRACTURE NETWORK MODEL CALIBRATION DATA AND RESULTS

Abbriviations: intersects. and ints. = interactions along scan line, no. = number, DFNM Discrete Fracture Network Model, na = not analyzed P10 = fracture intensity or number of fractures per unit line length and P32 = fracture density in fracture area per unit volume which reduces to P10

285S 100 Realizations Best Single DFNM	285N 100 Realizations Best Single DFNM
observed average relative simulated relative scan line scan line face scan line number of simulated percent number of percent	observed average relative simulated relative scan linescan line face scan line number of simulated percent number of percent
number orient orient P10 length intersects no. of ints. error intersects error	number orient orient P10 length intersects no. of ints. error intersects error
SL1 00/347 347/36 3.61 13.31 48 46.0 -4 47 -2	SL4 00/010 010/90 1.0 6.20 6 6.8 12 6 0
SL2 36/077 347/36 3.31 7.25 24 23.1 -4 27 11	SL5 00/100 100/90 1.5 9.10 14 13.9 -0.4 12 -16
SL3 00/290 290/90 1.85 3.78 7 7.4 6 7 0	SL7 25/271 115/48 2.2 3.16 7 4.9 -44 7 0
Totals 8.77 79 76.5 81 3	Totals 4.7 27.0 25.6 25.0 -7
Simulated Fracture Intensities (P32)	Simulated Fracture Intensities (P32)
set 1 set 2 set 3 set 4 set 5	set 1 set 2 set 3
1.7 1.1 1.3 1 0.01	0.2 0.9 0.5
Total P32 for DFN Model 5.1	Total P32 for DFN Model 1.6
Number of fractures in 15m DFN model 3679	Number of fractures in 15m DFN model 1248
LAMBERT 100 Realizations Best Single DFNM	LEGAULT PEAK EAST 100 Realizations Best Single DFNM
observed average relative simulated relative	observed average relative simulated relative
scan linescan line face scan line number of simulated percent number of percent	scan linescan line face scan line number of simulated percent number of percent
number orient orient P10 length intersects no. of ints. error intersects error	number orient orient P10 length intersects. no. of ints. error intersects error
SL1 10/150 060/10 3.66 14.19 52 52.3 1 54 3.8 SL2 10/200 200/70 2.85 9.46 27 29.5 9 26 3.7	SL6 25/330 330/90 3.19 5.33 17 10.4 -63 15 -13
SL2 10/200 200/70 2.85 9.46 27 29.5 9 26 3.7 SL3 60/232 052/82 7.05 1.56 11 2.5 -345 1 90	SL9 00/145 325/90 1.13 16.00 18 18.5 3 17 -6 SL10 90/055 325/90 2.97 4.71 14 13.5 -4 14 0
Totals 13.6 90 84.3 81 -10	Totals 7.3 49 42.4 46 -6
Simulated Fracture Intensities (P32)	Simulated Fracture Intensities (P32)
set 1 set 2 set 3 set 4	set 1 set 2 set 3
2.2 0.8 1 0.5	0.85 1.4 0.07
Total P32 for DFN Model 4.5	Total P32 for DFN Model 39.11
Number of fractures in 15m DFN model 4738	Number of fractures in 15m DFN model 1092
HARRINGTON 100 Realizations Best Single DFNM	NOBEL 100 Realizations Best Single DFNM
observed average relative simulated relative	observed average relative simulated relative
scan line scan line face scan line number of simulated percent number of percent	scan line scan line face scan line number of simulated percent number of percent
number orient orient P10 length intersects. no. of ints. error intersects error	number orient orient P10 length intersects. no. of ints. error intersects error
SL6 00/034 034/90 1.94 12.4 24 21.3 -11 25 4.2	SL07 90/330 330/90 1.80 5 9 3.9 -57 8 -11
SL10 87/027 027/87 1.16 11.2 13 11.5 -11 14 7.7	SL08 10/140 140/72 1.87 14.42 27 23.6 -13 22 -19
SL11 00/310 310/90 1.40 15* 21 25.9 23 21 0 Totals 4.5 58 58.7 60 3	SL09 00/050 230/50 1.40 15* 21 23.0 9 14 14 Totals 5.1 57 50.5 44 -23
* scan line length truncated to model size	Totals 3.1 31 30.3 44 -23
Simulated Fracture Intensities (P32)	Simulated Fracture Intensities (P32)
set 1a set 1b set 2 set 3	set 1a set 1b set 2 set 3
0.55 0.31 0.45 1.15	0.35 0.1 0.9 1
Total D20 for DEN Model	Total D20 for DEN Model
Total P32 for DFN Model 2.46 Number of fractures in 15m DFN model 2860	Total P32 for DFN Model 2.35 Number of fractures in 15m DFN model 2380
Number of nactures in 1911 DEN model 2000	Number of nactures in 15th DEN model 2500

TABLE DR2. TCW DISCRETE FRACTURE NETWORK MODEL CALIBRATION DATA AND RESULTS CONTINUED

· · · · · · · · · · · · · · · · · · ·	0 30 0 11 11 -8
number orient orient P10 length intersects. no. of ints. error intersects error number orient orient P10 length intersects. no. of ints. SL05 70/200 098/70 2.33 6 14 11.7 -17 14 0 G1 SL1 00/081 081/52 30.2 0.992 30 30.0 SL06 35/112 112/66 1.33 15* 20 21.2 6 22 10 G1 SL2 52/171 081/52 10.8 1.110 12 13.4 SL07 10/120 300/85 1.33 15* 20 20.5 2 20 0 EW 00/159 159/61 19.9 1.005 20 17.2	ats. error intersects error 0 30 0 11 11 -8
SL05 70/200 098/70 2.33 6 14 11.7 -17 14 0 G1 SL1 00/081 081/52 30.2 0.992 30 30.0 SL06 35/112 112/66 1.33 15* 20 21.2 6 22 10 G1 SL2 52/171 081/52 10.8 1.110 12 13.4 SL07 10/120 300/85 1.33 15* 20 20.5 2 20 0 EW 00/159 159/61 19.9 1.005 20 17.2	0 30 0 11 11 -8
SL06 35/112 112/66 1.33 15* 20 21.2 6 22 10 G1 SL2 52/171 081/52 10.8 1.110 12 13.4 SL07 10/120 300/85 1.33 15* 20 20.5 2 20 0 EW 00/159 159/61 19.9 1.005 20 17.2	11 11 -8
SL07 10/120 300/85 1.33 15* 20 20.5 2 20 0 EW 00/159 159/61 19.9 1.005 20 17.2	
	-17 18 -10
10tais 4.99	
	41 -2
Simulated Fracture Intensities (P32) Simulated Fracture Intensities (P32)	
set 1 set 2 set 3 set 4 set 2 set 3	
0.55 0.3 0.75 0.41 21 0.8 6	
Total P32 for DFN Model 2.01 Total P32 27	7.8
Number of fractures in 15m DFN model 2905 Number of fractures in 2m DFN model 19	
Projected number of fractures in 15m DFN mode ~125.0	
· · · · · · · · · · · · · · · · · · ·	
JUNCTION RANCH-PARADISE HILLS FAULT ZON100 Realizations Best Single DFNM JUNCTION RANCH-PARADISE HILLS FAULT ZO 100 Realizations GRID 2 observed average relative simulated relative GRID 3 observed average observed average relative simulated relative GRID 3	ū
	ge relative simulated relative
	ed percent number of percen ats. error intersects error
*	
	na na na
G2 SL2 53/160 070/53 18.0 0.998 18 17.3 -4 15 16.6 G3 SL2 61/249 159/61 22.1 0.997 22 na EW 00/159 159/61 19.9 1.005 20 18.2 -10 20 0 Totals 42 42 0.0	na na na 0 0
	0 0
Totals 57 57 55.6 54 -5 Simulated Fracture Intensities (P32)	
Simulated Fracture Intensities (P32) set 1 set 2 set 3 set 4 set 5	
set 1 set 2 set 3 set 4 na na na na na	
6 8 6 7.2	
Total P32 for DFN Model	0
	na
Number of fractures in 2m DFN model 1644	
Projected number of fractures in 15m DFN model ~121,000	
CONIFER-ASPEN PARK FAULT ZONE GRID 1 100 Realizations Best Single DFNM CONIFER-ASPEN PARK FAULT ZONE GRID 1 100 Realizations	olimations - Root Cinale DENA
	alizations Best Single DFNN re relative simulated relative
	,
G1 SL1 00/170 170/60 17.5 1.946 34 31.2 -9 35 2.9 G1 SL1 00/170 170/60 17.5 1.946 34 35.2 G1 SL2 60/260 170/60 11.3 1.235 14 14.1 1 13 -7.1 G1 SL2 60/260 170/60 11.3 1.235 14 14.5	
Totals 28.8 48 45.3 48 0 G2 NS 00/118 118/50 2.8* 1.8* 5* 21.0 Totals 29 48 70.7	-4 5 0 54 13
Simulated Fracture Intensities (P32) * Based on 19 intersections along a 6.65m scan line giving 2	
· ·	intersections per meter
3.7 3.5 9 0.5 0.5 set 1 set 2 set 3 set 4 set 5 set g2 ns	
3.7 3.5 9 0.5 0.5	
3.7 3.5 9 0.5 0.5 3.7 3.5 9 0.5 0.5 3.6 Total P32 for DFN Model 17.2 Total P32 for DFN Model 20	0.8
3.7 3.5 9 0.5 0.5	20

TABLE DR3. FRACTURE INTENSITY AND AQUIFER HYDRAULIC DATA FROM PREVIOUS WORK IN 1

Cubic Law $T \sim 10^6 (b)^3$

Hicks, 1987

Estimated Fracture Intensities (joints per meter

P10 ysp	P10 gneiss	P10 all	metamorphic rocks
0.06	0.06	0.06	min
6	6	6	max

Lawrence, 1990

Estimated Transmissivities (T)

T (gpd/ft)	T (m²/s)
3	4.31E-07
9300	1.34E-03
max	1.34E-03
min	4.31E-07

Folger, 1995

Estimated Transmissivities (T)			Hydraulid	Aperture (b) Estimates	Porosity (n) Estimates				
T (m²/day)	$T (m^2/s)$		b (om)		n (liters)	n#(m³)			
3	3.47E-05		380	•	0.19	0.00019			
6	6.94E-05		240		0.12	0.00012			
11	1.27E-04		110		0.06	0.00006			
3	3.47E-05		200		0.01	0.00001			
0.07	8.10E-07		190		0.57	0.00057			
0.9	1.04E-05		120		0.36	0.00036			
120	1.39E-03		60		0.16	0.00016			
0.2	2.31E-06		100		0.03	0.00003			
0.4	4.63E-06		570						
0.8	9.26E-06		360		5.70E-01	5.70E-04 max			
2	2.31E-05		160		1.00E-02	1.00E-05 min			
7	8.10E-05		300						
14	1.62E-04								
15	1.74E-04		570	max					
12	1.39E-04		60	min					
1	1.16E-05		233	mean					
160	1.85E-03		195	median					
0.7	8.10E-06								
0.5	5.79E-06								
	1.85E-03 8.10E-07	max min							

TABLE DR4. TCW DICRETE FRACTURE NETWORK (DFN) MODEL POTENTIAL POROSITY RESULTS

 $V_{\rm f}$ = total fracture volume, $n_{\rm p}$ = total fracture network potential porosity in DFN model

METAMORP								
location and DFN model size	DFN model density (m ² /m ³)	DFN model volume (m³)	Vf @ 10 o m (m³)	Vf @ 100gm (m³)	Vf @ 1mm (m³)	n _p @ 10 თ m (%)	n _p @ 100 σ m (%)	n _p @ 1mm (%)
285S	(,)	(*** /		()	\/		(75)	
2m	5.10	8	4.08E-04	4.08E-03	4.08E-02	0.0051	0.051	0.51
5m	5.10	125	6.38E-03	6.38E-02	6.38E-01			
10m	5.10	1000	5.10E-02	5.10E-01	5.10E+00			
15m	5.10	3375	1.72E-01	1.72E+00	1.72E+01			
285N								
2m	1.607	8	1.29E-04	1.29E-03	1.29E-02	0.0016	0.0161	0.1607
5m	1.607	125	2.01E-03	2.01E-02	2.01E-01			
10m	1.607	1000	1.61E-02	1.61E-01	1.61E+00			
15m	1.607	3375	5.42E-02	5.42E-01	5.42E+00			
LAMBERT								
2m	4.517	8	3.61E-04	3.61E-03	3.61E-02	0.0045	0.0452	0.4517
5m	4.517	125	5.65E-03	5.65E-02	5.65E-01			
10m 15m	4.517 4.517	1000 3375	4.52E-02	4.52E-01	4.52E+00			
13111	4.517	3373	1.52E-01	1.52E+00	1.52E+01			
LEGAULT P						2		
2m	2.31	8	1.85E-04	1.85E-03	1.85E-02	0.0023	0.0231	0.231
5m	2.31	125	2.89E-03	2.89E-02	2.89E-01			
10m 15m	2.31 2.31	1000 3375	2.31E-02 7.80E-02	2.31E-01 7.80E-01	2.31E+00 7.80E+00			
13111	2.51	3373	7.00L-02	7.000-01	AVERAG	E 0.0034	0.0338	0.3384
					MA	X 0.0051	0.0510	0.5100
INTRUSIVE location		DFN model			MI	N 0.0016	0.0161	0.1607
and DFN	density	volume	Vf @ 10 o m	Vf @ 100σm	Vf @ 1mm	ი _ი @ 10 თ m	ი _ი @ 100 თ m	n _p @ 1mm
model size	(m ² /m ³)	(m ³)	(m ³)	(m ³)	(m ³)	(%)	(%)	(%)
HARRINGTO		<u> </u>		()	<u> </u>		(70)	(70)
2m	2.46	8	1.97E-04	1.97E-03	1.97E-02	0.0025	0.0246	0.246
5m	2.46	125	3.08E-03	3.08E-02	3.08E-01			
10m	2.46	1000	2.46E-02	2.46E-01	2.46E+00			
15m	2.46	3375	8.30E-02	8.30E-01	8.30E+00			
NOBEL								
2m	2.01	8	1.61E-04	1.61E-03	1.61E-02	0.0020	0.0201	0.201
5m	2.01	125	2.51E-03	2.51E-02	2.51E-01			
10m	2.01	1000	2.01E-02	2.01E-01	2.01E+00			
15m	2.01	3375	6.78E-02	6.78E-01	6.78E+00			
GREEN								
2m	2.35	8	1.88E-04	1.88E-03	1.88E-02	0.0024	0.0235	0.235
5m	2.35	125	2.94E-03	2.94E-02	2.94E-01			
10m 15m	2.35 2.35	1000 3375	2.35E-02 7.93E-02	2.35E-01 7.93E-01	2.35E+00 7.93E+00			
13111	2.33	3373	7.93L=02	7.936-01	AVERAG	E 0.0023	0.0227	0.2273
					MA		0.0246	0.2460
FAULT ZON					MI	N 0.0020	0.0201	0.2010
location and DFN	DFN model density	DFN model volume	Vf @ 10 o m	Vf @ 100σm	Vf @ 1mm	n @ 10	n @ 100	n _p @ 1mm
model size	(m ² /m ³)	(m ³)	(m ³)	(m ³)	(m ³)	n _p @ 10σm (%)	n _p @ 100σm (%)	(%)
			AULT ZONE GRI	. ,	V /	(70)	(70)	(70)
2m	27.78	8	2.22E-03	2.22E-02	2.22E-01	0.028	0.278	2.780
5m	27.78	125	3.47E-02	3.47E-01	3.47E+00			
10m	27.78	1000	2.78E-01	2.78E+00	2.78E+01			
15m	27.78	3375	9.38E-01	9.38E+00	9.38E+01			
JUNCTION F	RANCH-PARA	ADISE HILLS FA	AULT ZONE GRI	D 2				
2m	27.17	8	2.17E-03	2.17E-02	2.17E-01	0.027	0.272	2.720
5m	27.17	125	3.40E-02	3.40E-01	3.40E+00			
10m	27.17	1000	2.72E-01	2.72E+00	2.72E+01			
15m	27.17	3375	9.17E-01	9.17E+00	9.17E+01			
CONIFER-A	SPEN PARK	FAULT ZONE						
2m	21.00	8	1.68E-03	1.68E-02	1.68E-01	0.021	0.210	2.100
5m	21.00	125	2.63E-02	2.63E-01	2.63E+00			
10m	21.00	1000	2.10E-01	2.10E+00	2.10E+01			
15m	21.00	3375	7.09E-01	7.09E+00	7.09E+01 AVERAG	E 0.0252	0.3533	2 5222
					AVERAG MA		0.2532 0.2778	2.5333 2.7800
					MI		0.2100	2.1000

$\frac{\text{TABLE DR5. TCW DISCRETE FRACTURE NETWORK MODEL (DFNM) POTENTIAL PERMEABILITY}}{\text{All DFNMs run with uniform } b = 100\sigma m \text{ and } T=1e-6m^2/s$

First column indicates DFNM size & flow direction (e.g. 2mtb is a two meter DFNM with top to bottom flow, ew=east to west, ns=north to south). For each DFNM outflow face: Q=mass flux, I=hydraulic gradient, A=cross-sectional area, K=hydraulic conductivity, k=potential permeability. Fracture intensity is in units of m²/m³ and volume is in units of m³.

location, DFNM					g	ic k	normalize							
size, and flow	O (m ³ /a)		A (m=4)		Ir (m=4)	mean		to					k fracture	
direction	Q (m³/s)	ı	A (m²)	K (m/s)	k (m²)	k	log k	min	max	min	max	mın	intensity	volume
285N 2mtb	2.4E-07	0.05	4	1 25 06	1.2E-13	19.6	-12.9	1 2⊑±17	1.2E-13	1 0= 30	tb	ew	1.607	8
2mew	0.0E+00	0.05	4	0.0E+00		-10.0	-30.0	1.0	1.ZL-13	1.0L-30	ıb	CW	1.607	8
2mns	2.4E-07	0.05	4		1.2E-13		-12.9	1.2E+17					1.607	8
211110	2.12 01	0.00	•	1.22 00	1.22 10		12.0	1.22.17					1.001	J
5mtb	5.2E-07	0.02	25	1.0E-06	1.1E-13	-13.1	-13.0	1.9	1.1E-13	5.5E-14	tb	ew	1.607	125
5mew	2.7E-07	0.02	25	5.4E-07	5.5E-14		-13.3	1.0					1.607	125
5mns	3.9E-07	0.02	25	7.9E-07	8.0E-14		-13.1	1.5					1.607	125
10mtb	8.4E-07	0.01	100		8.6E-14	-13.2		1.9	8.6E-14	4.6E-14	tb	ew	1.607	1000
10mew	4.5E-07	0.01	100		4.6E-14		-13.3	1.0					1.607	1000
10mns	7.1E-07	0.01	100	7.1E-07	7.2E-14		-13.1	1.6					1.607	1000
15mtb	1.0E-06	0.0067	222	6 0E 07	7.0E-14	122	-13.2	1.8	7 OE 14	3.9E-14	tb	ew	1.607	3375
15mew	5.7E-07	0.0067	222		3.9E-14	-13.3	-13.4	1.0	7.0⊑-14	3.9⊑-14	ıb	ew	1.607	3375
15mns	8.7E-07		222		6.0E-14		-13.2	1.5					1.607	3375
1011110	0.7 = 07	0.0001		0.02 07	0.02 11		10.2	1.0					1.007	0010
LAMBERT														
2mtb	2.5E-07	0.05	4	1.3E-06	1.3E-13	-13.0	-12.9	1.6	1.3E-13	8.0E-14	tb	ew	4.517	8
2mew	1.6E-07	0.05	4	7.8E-07	8.0E-14		-13.1	1.0					4.517	8
2mns	2.2E-07	0.05	4	1.1E-06	1.1E-13		-13.0	1.4					4.517	8
	4.05.00		0.5	0.45.00	0 == 40	40.0	40.0		0.55.40				4 = 4 =	405
5mtb	1.2E-06	0.02 0.02	25 25		2.5E-13 6.7E-14	-12.9	-12.6 -13.2	3.7 1.0	2.5E-13	6.7E-14	tb	ew	4.517 4.517	125 125
5mew 5mns	3.3E-07 4.9E-07	0.02	25 25		1.0E-13		-13.2	1.5					4.517 4.517	125
JIIIIS	4.3L-01	0.02	23	3.0L-01	1.0L-13		-13.0	1.5					4.517	123
10mtb	3.4E-06	0.01	100	3.4E-06	3.4E-13	-12.6	-12.5	2.0	3.4E-13	1.7E-13	tb	ew	4.517	1000
10mew	1.7E-06	0.01	100	1.7E-06	1.7E-13		-12.8	1.0					4.517	1000
10mns	2.0E-06	0.01	100	2.0E-06	2.0E-13		-12.7	1.2					4.517	1000
15mtb	4.4E-06	0.0067	222		3.0E-13	-12.7	-12.5	1.8	3.0E-13	1.7E-13	tb	ew	4.517	3375
15mew	2.5E-06	0.0067	222		1.7E-13		-12.8	1.0					4.517	3375
15mns	3.0E-06	0.0067	222	2.0E-06	2.1E-13		-12.7	1.2					4.517	3375
LEGAULT PEA	ĸ													
2mtb	1.3E-13	0.05	4	6 7F-13	6.8E-20	-14 8	-19.2	1.0	2 6F-13	6.8E-20	ew	tb	2.31	8
2mew	5.2E-07	0.05	4		2.6E-13	1 1.0	-12.6		2.02 10	0.02 20	•••		2.31	8
2mns	3.3E-07	0.05	4		1.7E-13			2.5E+06					2.31	8
5mtb	3.2E-08	0.02	25	6.4E-08	6.5E-15	-13.3	-14.2	1.0	1.6E-13	6.5E-15	ew	tb	2.31	125
5mew	7.8E-07	0.02	25	1.6E-06	1.6E-13		-12.8	24.4					2.31	125
5mns	6.4E-07	0.02	25	1.3E-06	1.3E-13		-12.9	19.8					2.31	125
10mtb	1.6E-07	0.01	100	1 65 07	1.7E-14	12.0	-13.8	1.0	1 55 40	1.7E-14	ew	tb	2.31	1000
10mtb 10mew	1.6E-07 1.5E-06	0.01	100		1.7E-14 1.5E-13	-13.2	-13.8	9.1	1.5E-13	1.7 E-14	ew	tD	2.31	1000
10mew	1.4E-06	0.01	100		1.5E-13 1.4E-13		-12.0	9. i 8.5					2.31	1000
10111113	1.4∟-00	0.01	100	1.46-00	1.46-13		12.3	0.0					2.01	1000
15mtb	2.6E-07	0.0067	222	1.8E-07	1.8E-14	-13.2	-13.7	1.0	1.2E-13	1.8E-14	ew	tb	2.31	3375
15mew		0.0067	222		1.2E-13		-12.9	6.7			-		2.31	3375
15mns	1.6E-06	0.0067	222	1.1E-06	1.1E-13		-13.0	5.9					2.31	3375

285S

TABLE DR5. TCW DISCRETE FRACTURE NETWORK MODEL (DFNM) POTENTIAL PERMEABILITY RESULTS CONTINUED

location, size, geometric k norm direction of k														
flow direction	Q (m ³ /s)	- 1	A (m ²)	K (m/s)	k (m²)				max	min	max		intensity	volume
HARRINGTON			, ,	()	. ,		1-3-1							
2mtb	2.7E-07	0.05	4	1.4E-06	1.4E-13	-13.1	-12.9	2.3	1.4E-13	6.0E-14	tb	ew	2.46	8
2mew	1.2E-07	0.05	4	5.8E-07	6.0E-14		-13.2	1.0					2.46	8
2mns	1.6E-07	0.05	4	7.8E-07	7.9E-14		-13.1	1.3					2.46	8
5mtb	6.5E-07	0.02	25		1.3E-13	-12.9		1.3	1.3E-13	1.0E-13	tb	ns	2.46	125
5mew	5.1E-07	0.02	25		1.0E-13		-13.0	1.0					2.46	125
5mns	5.0E-07	0.02	25	1.0E-06	1.0E-13		-13.0	1.0					2.46	125
10mtb	1.2E-06	0.01	100	1 25 06	1.3E-13	12.0	12.0	1.6	1 25 12	8.0E-14	tb	0147	2.46	1000
10mew	7.9E-07	0.01	100		8.0E-14	-13.0	-12.9	1.0	1.3⊑-13	0.0⊑-14	ıb	ew	2.46	1000
10mns	9.5E-07	0.01	100		9.7E-14		-13.1	1.0					2.46	1000
1011113	3.5L-01	0.01	100	3.3L-01	3.7 L-14		-13.0	1.2					2.40	1000
15mtb	1.8E-06	0.0067	222	1.2E-06	1.3E-13	-13.0	-12.9	1.6	1.3E-13	7.9E-14	tb	ew	2.46	3375
15mew	1.2E-06	0.0067	222		7.9E-14		-13.1	1.0					2.46	3375
15mns	1.4E-06	0.0067	222	9.6E-07	9.8E-14		-13.0	1.2					2.46	3375
NOBEL														
2mtb	3.6E-07	0.05	4		1.9E-13	-13.0		2.5	1.9E-13	7.4E-14	tb	ew	2.01	8
2mew	1.5E-07	0.05	4		7.4E-14		-13.1	1.0					2.01	8
2mns	1.5E-07	0.05	4	7.5E-07	7.7E-14		-13.1	1.0					2.01	8
5mtb	5.3E-07	0.02	25	1 1 = 06	1.1E-13	12.2	13.0	2.7	1 1 🗆 1 2	4.0E-14	tb	ew	2.01	125
5mew	2.0E-07	0.02	25		4.0E-14	-13.2	-13.4	1.0	1.1L-13	4.0L-14	ıb	CVV	2.01	125
5mns	2.4E-07	0.02	25		5.0E-14		-13.3	1.2					2.01	125
011110	22 0.	0.02	0		0.02								2.0.	.20
10mtb	1.0E-06	0.01	100	1.0E-06	1.1E-13	-13.1	-13.0	2.0	1.1E-13	5.3E-14	tb	ew	2.01	1000
10mew	5.2E-07	0.01	100	5.2E-07	5.3E-14		-13.3	1.0					2.01	1000
10mns	6.3E-07	0.01	100	6.3E-07	6.4E-14		-13.2	1.2					2.01	1000
15mtb	1.5E-06		222		1.0E-13	-13.2		2.0	1.0E-13	5.0E-14	tb	ew	2.01	3375
15mew	7.3E-07		222		5.0E-14		-13.3	1.0					2.01	3375
15mns	9.0E-07	0.0067	222	6.0E-07	6.2E-14		-13.2	1.2					2.01	3375
GREEN														
2mtb	1.9E-07	0.05	4	9 6F-07	9.8E-14	-13 1	-13.0	1.8	1 0F-13	5.4E-14	ew	ns	2.35	8
2mew	2.0E-07	0.05	4		1.0E-13	10.1	-13.0	1.9	1.02 10	0.12 11	•••	110	2.35	8
2mns	1.0E-07	0.05	4		5.4E-14		-13.3	1.0					2.35	8
5mtb	5.3E-07	0.02	25	1.1E-06	1.1E-13	-13.0	-13.0	1.8	1.2E-13	6.0E-14	ew	ns	2.35	125
5mew	5.9E-07	0.02	25		1.2E-13		-12.9	2.0					2.35	125
5mns	2.9E-07	0.02	25	5.9E-07	6.0E-14		-13.2	1.0					2.35	125
40 11	0.05.07	0.04	400	0.05.07	0.05.44	40.0	40.0	4.4	4.05.40	0.55.44			0.05	4000
10mtb	9.6E-07	0.01	100		9.8E-14	-13.0	-13.0	1.1	1.2E-13	8.5E-14	ew	ns	2.35	1000
10mew	1.2E-06	0.01	100		1.2E-13		-12.9	1.4					2.35	1000
10mns	8.4E-07	0.01	100	0.4⊑-07	8.5E-14		-13.1	1.0					2.35	1000
15mtb	1.3E-06	0.0067	222	9 0F-07	9.2E-14	-13.0	-13.0	1.0	1 0F-13	9.1E-14	ew	ns	2.35	3375
15mew	1.5E-06				1.0E-13					0.12 11	•••	110	2.35	3375
15mns		0.0067		8.9E-07			-13.0	1.0					2.35	3375
JUNCTION RA							117	2.0	2 25 42	6 OF 40	4 lm		27.70	0
2mtb 2mew	4.3E-06 1.3E-06	0.05 0.05	4 4		2.2E-12 6.8E-13	-11.9	-11.7 -12.2	3.2	∠.∠⊏-12	6.8E-13	tb	ew	27.78 27.78	8 8
2mns	3.6E-06	0.05	4		1.8E-12		-12.2	1.0 2.7					27.78 27.78	8
10mtb	ated - extr		-	1.02-00	1.6E-11	10.0	-10.8	1.9	165 11	8.7E-12	tb	ew	27.78	1000
10mb	ated - extr				8.7E-12	-10.9	-10.6	1.9	1.0⊑-11	0.7 ⊑-12	ıD	ew	27.78 27.78	1000
10mns	ated - extr				1.2E-11		-10.9	1.4					27.78	1000
.0	LICG CAU	Spoidio	•		11		10.0						20	1000