DATA REPOSITORY ITEM 2002062

Sources of Data on Altitude of the sub-Ogallala Surface (Figs. 2 and 4)

- Baldwin, B., and Bushman, F.X., 1957, Guides for development of irrigation wells near Clayton, Union County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Circular 46, 64 p.
- Baldwin, B., and Muehlberger, W.R., 1959, Geological studies of Union County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 63, 171 p.
- Borman, R.G., and Meredith, T.S., 1983, Geology, altitude, and depth of the bedrock surface beneath the Ogallala Formation in the northern high plains of Colorado: U.S. Geological Survey Hydrologic Investigations Atlas HA-669, scale 1:500 000, 1 sheet.
- Borman, R.G., Meredith, T.S., and Bryn, S.M., 1984, Geology, altitude, and depth of the bedrock surface; altitude of water table in 1980; and saturated thickness of the Ogallala aquifer in 1980 in the southern high plains of Colorado: U.S. Geological Survey Hydrologic Investigations Atlas HA-673, scale 1:500 000, 1 sheet.
- Bryant, B., McGrew, L.W., and Wobus, R.A., 1981, Geologic map of the Denver 1^o x 2^o quadrangle, north-central Colorado: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-1163, scale 1:250 000, 2 sheets.
- Cooley, M.E., and Crist, M.A., 1981, Generalized fence diagram showing stratigraphy and potentiometric surface of the Tertiary formations in southeastern Wyoming and adjacent part of Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-1308, 1 sheet.
- Dane, C.H., and Bachman, G.O., 1965, Geologic map of New Mexico: U.S. Geological Survey, scale 1:500 000, 2 sheets.
- Levings, W.S., 1951, Late Cenozoic erosional history of the Raton Mesa region: Quarterly of the Colorado School of Mines, v. 46. No. 3, p. 1-111.
- Love, J.D., and Christiansen, A.C., 1985, Geologic map of Wyoming: U.S. Geological Survey, scale 1:500 000, 2 sheets.
- Scott, G.R., 1968, Geologic and structure contour map of the La Junta quadrangle, Colorado and Kansas: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-560, scale 1:250 000, 1 sheet.
- Scott, G.R., 1978, Map showing geology, structure, and oil and gas fields in the Sterling 1^o x 2^o quadrangle, Colorado, Nebraska, and Kansas: U.S. Geological Survey Miscellaneous Investigations Map I-1092, scale 1:250 000, 1 sheet.
- Scott, G.R., 1986, Geologic and structure-contour map of Springer 30' x 60' quadrangle, Colfax, Harding, Mora, and Union Counties, New Mexico: U.S. Geological Survey Miscellaneous Investigations Map I-1705, 1:100 000, 1 sheet.
- Scott, G.R., and Pillmore, C.L., 1993, Geologic and structure-contour map of Raton 30' x 60' quadrangle, Colfax and Union Counties, New Mexico, and Las Animas County, Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-2266, scale 1:100 000, 1 sheet.
- Sharps, J.A., 1980, Geologic map of the Limon 1° x 2° quadrangle, Colorado and Kansas: U.S. Geological Survey Miscellaneous Investigations Map I-1250, scale 1:250 000, 1 sheet.
- Swinehart, J.B. and Diffendal, R.F. Jr., 1997, Geologic map of the Scottsbluff 1^o x 2^o quadrangle, Nebraska, and Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-2545, scale 1:250 000, 1 sheet.
- Swinehart, J.B., Souders, V.L., DeGraw, H.M., and Diffendal, R.F. Jr., 1985, Cenozoic paleogeography of western Nebraska, in Flores, R.M., and Kaplan, S.S. eds. Cenozoic paleogeography of the westcentral United States: Denver, Colorado, Society of Economic Paleontologists and Mineralogists, Rocky Mountain Paleogeography Symposium 3, p. 209-229.
- Tweto, O., 1979, Geologic map of Colorado: U.S. Geological Survey, scale 1:500 000, 2 sheets.

Table DR1. Flexural Modeling Results (See Figure 3)

Loading of sub-Ogallala surface = Mean net erosion (-) or deposition (+) in cell with respect to the sub-Ogallala surface D = Flexural Rigidity

NR = Value not reported -- due to inaccuracy in flexure calculated for cells near ends of transects.

Cell location (km north of Colorado/New Mexico boundary)	Loading of sub- Ogallala surface (m)	Computed flexural uplift $D = 10^{22} N m$ (m)	Computed flexural uplift $D = 10^{23} N m$ (m)	Computed flexural uplift $D = 10^{24}$ N m (m)	Computed flexural uplift $D = 10^{25} N m$ (m)
-200	-123	NR	NR	NR	NR
-150	-9	NR	NR	NR	NR
-100	+32	-26	-13	19	NR
-50	+32	-21	-7	40	62
0	-60	34	47	78	77
50	-109	114	135	121	89
100	-384	272	220	153	97
150	-330	258	217	152	95
200	-163	126	132	120	85
250	+12	5	40	74	70
300	0	-11	-4	35	53
350	+21	-6	-11	9	36
400	-36	9	-6	-5	22
450	+60	-23	-7	-12	10
500	-40	13	-2	-13	NR
550	+15	NR	NR	NR	NR
600	+53	NR	NR	NR	NR

Eastern Transect - 103°08' W

Leonard - 3

111	ladie Hunseet	105 50 11		
Loading of sub- Ogallala surface (m)	Computed flexural uplift $D = 10^{22} N m$ (m)	Computed flexural uplift $D = 10^{23}$ N m (m)	Computed flexural uplift $D = 10^{24} N m$ (m)	Computed flexural uplift $D = 10^{25}$ N m (m)
-118 -91 -33 +90 -180 -490 -728 -622 -269 -75 -182 -244 -122 +54	NR NR 9 -42 133 386 554 472 220 77 134 178 91 -22	NR NR 9 28 164 354 466 416 261 144 124 123 76 14	NR NR 67 121 204 292 343 336 281 214 157 110 66 28 ND	NR NR 155 191 222 240 241 226 200 169 135 101 NR
-165	NR	NR	NR	NR
	Loading of sub- Ogallala surface (m) -118 -91 -33 +90 -180 -490 -728 -622 -269 -75 -182 -244 -122 +54 +9 -165	Loading of sub- Ogallala surface (m)Computed flexural uplift $D = 10^{22} N m$ (m)-118 $D = 10^{22} N m$ (m)-118 NR (m)-91 NR -33-91 NR -42-180133 -490-420386 -728-728554 -622-622472 -269-7577 -182-182134 -244-178 -122+9NR -165	Loading of sub- OgallalaComputed flexural uplift $D = 10^{22} N m$ (m)Computed flexural uplift $D = 10^{23} N m$ (m)-118NRNR.00.00-118NRNR.00.018NR	Loading of sub- OgallalaComputed flexural uplift D = 10^{22} N m (m)Computed flexural uplift D = 10^{23} N m (m)Computed flexural uplift D = 10^{24} N m (m)-118NRNRNRNR-91NRNRNR-339967+90-4228121-180133164204-490386354292-728554466343-622472416336-269220261281-7577144214-182134123110-122917666+54-221428+9NRNRNR-165NRNRNR

Middle Transect - 103°50' W

Western Transect - 104°30' W					
Cell location (km north of Colorado/New Mexico Boundary)	Loading of sub- Ogallala surface (m)	Computed flexural uplift $D = 10^{22} N m$ (m)	Computed flexural uplift $D = 10^{23}$ Nm (m)	Computed flexural uplift $D = 10^{24} N m$ (m)	Computed flexural uplift $D = 10^{25} N m$ (m)
$ \begin{array}{r} -100 \\ -50 \\ 0 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ \end{array} $	-117 -359 -324 -717 -921 -1011 -484 -87 -200 -321 -209 +6	NR NR 298 539 735 742 389 102 146 233 154 17	NR NR 353 535 662 623 410 210 154 160 125 71	NR NR 374 476 529 507 418 310 224 164 118 84	NR NR 359 381 378 353 313 267 220 174 NR
500 550	-47 -241	NR NR	NR NR	NR NR	NR NR

Flexural	Model results	Effect of fit	Effect of densi	ty assumptions [§]
rigidity	Fifth order fit, model densities	Linear fit, model densities	Fifth order fit, high density contrast	Fifth order fit, low density contrast
(N m)	(%)	(%)	(%)	(%)
1 x 10 ²²	66-86	64-92	55-72	77-102
1 x 10 ²³	60-73	56-76	50-61	71-86
1 x 10 ²⁴	46-52	39-54	38-44	54-62
1 x 10 ²⁵	22-26	19-27	19-22	26-31

Table DR 2. Sensitivity Test Results

Note: Values are percent of the north-south tilt of the sub-Ogallala surface that can be explained isostatically with different model assumptions. Cells indicate the range of results for the three transects.

* Model results test was run using a fifth order polynomial fit to approximate the sub-Ogallala surface. Crustal sediment and mantle aesthenosphere densities are assumed to be 2500 kg/m³ and 3300 kg/m³, respectively. These are the input parameters used to generate results shown in Figure 3 and Table 1.

† Effect of fit test is an end-member test examining the effect of projection across eroded portions of the sub-Ogallala surface. In this test a linear projection is used where the surface has been eroded across major river valleys. Crustal sediment and mantle aesthenosphere densities are assumed to be 2500 kg/m³ and 3300 kg/m³, respectively.

§ Effect of density assumptions tests were run using a fifth order polynomial fit to approximate the sub-Ogallala surface. High density contrast test was run with crustal sediment density of 2200 kg/m³ and mantle aesthenosphere density of 3500 kg/m³. Low density contrast test was run with crustal sediment density of 2800 kg/m³ and mantle aesthenosphere density of 3100 kg/m³.