2001063 Mineral compositions from Darondi rocks, central Nepal

Plagioclase rim compositions											
Sample	DH17	DH19	DH22	DH23	DH26	DH38		DH58	3		
XAn	0.12	0.23	0.19	0.20	0.13	0.32		0.19			
XAlb	0.88	0.77	0.80	0.79	0.86	0.68		0.80			
XOr	0.00	0.00	0.01	0.01	0.01	0.00		0.01			
Sample	DH60	DH61	DH63	DH66	DH67	DH71		DH7	5a	DH75	0
XAn	0.21	0.27	0.21	0.30	0.31	0.026		0.19		0.14	
XAlb	0.78	0.72	0.78	0.69	0.68	0.971		0.80		0.86	
XOr	0.01	0.01	0.01	0.01	0.01	0.003		0.01		0.00	
Garnet Minimum-Mn compositions											
Sample	DH17	DH19	DH22	DH23	DH26	DH30	DH38	3	DH57	DI	H58
XPrp	0.064	0.064	0.068	0.073	0.081	0.095	0.099)	0.171	0.	108
XAIm	0.774	0.788	0.807	0.783	0.713	0.870	0.641		0.771	0.	724
XSps	0.092	0.039	0.060	0.045	0.158	0.002	0.071		0.005	0.	022
XGrs	0.070	0.110	0.065	0.099	0.048	0.033	0.189)	0.053	0.	146
Fe/(Fe+Mg)	0.923	0.925	0.922	0.915	0.898	0.902	0.866	6	0.818	0.	870
Sample	DH58*	DH60	DH61	DH63	DH66	DH67	DH71		DH75a	a DI	H75b
XPrp	0.116	0.127	0.145	0.165	0.113	0.135	0.136	6	0.085	0.	102
XAIm	0.549	0.710	0.652	0.708	0.586	0.619	0.813	3	0.773	0.	837
XSps	0.130	0.048	0.082	0.026	0.124	0.098	0.036	6	0.003	0.	004
XGrs	0.204	0.115	0.121	0.101	0.177	0.148	0.015	5	0.139	0.	058
Fe/(Fe+Mg)	0.825	0.848	0.818	0.811	0.838	0.821	0.857	,	0.901	0.	891

* Minimum Fe/(Fe+Mg) garnet composition, which is different from the minimum-Mn in garnets from this rock.

Mica/Amphibole compositions Sample DH17 Bt DH17 Ms DH19 Bt DH19 Ms DH22 Bt DH22 Ms DH23 Bt DH23 Ms Si 2.698 3.074 2.701 3.036 2.697 3.055 2.680 3.09 AI 1.777 2.796 1.753 2.868 1.744 2.853 1.718 2.763 Ti 0.056 0.013 0.081 0.012 0.087 0.016 0.094 0.013 Mg 0.946 0.064 0.942 0.044 0.907 0.048 0.910 80.0 Fe2+ 1.424 0.089 1.393 0.072 1.472 0.062 1.426 0.091 Mn 0.006 0.001 0.008 0 0.006 0 0.006 0.003 Са 0.002 0 0 0 0.006 0.003 0.000 0.001 0.18 0.029 0.149 0.029 0.182 0.028 0.182 Na 0.017 0.885 0.778 0.897 0.821 0.823 0.75 0.892 0.771 Κ Fe/(Fe+Mg) 0.601 0.582 0.597 0.621 0.619 0.564 0.610 0.532

Sample	DH26 Bt	DH26 Ms	DH38 Hb	DH57 Bt	DH57 Ms	DH-58 Bt	DH-58 Ms	DH-60 Bt
Si	2.716	3.052	6.386	2.753	3.093	2.778	3.132	2.730
AI	1.709	2.851	2.807	1.717	2.767	1.626	2.635	1.678
Ti	0.091	0.015	0.042	0.099	0.027	0.126	0.046	0.140
Mg	1.08	0.070	1.886	1.229	0.092	1.088	0.116	1.158
Fe2+	1.277	0.063	2.033	1.092	0.066	1.222	0.123	1.132
Mn	0.008	0	0.036	0	0.002	0.014	0	0.006
Са	0	0	1.778	0	0	0	0	0.002
Na	0.015	0.190	0.35	0.039	0.118	0.024	0.114	0.030
К	0.901	0.723	0.051	0.762	0.781	0.834	0.792	0.858
Fe/(Fe+Mg)	0.542	0.474	0.519	0.470	0.418	0.529	0.515	0.494
Sample	DH60 Ms	DH61 Bt	DH63 Bt	DH63 Ms	DH66 Bt	DH66 Ms	DH67 Bt	DH67 Ms
Si	3.077	2.772	2.728	3.061	2.734	3.075	2.691	3.159
AI	2.754	1.588	1.684	2.773	1.659	2.691	1.718	2.567
Ti	0.038	0.115	0.101	0.032	0.099	0.052	0.096	0.039
Mg	0.098	1.371	1.243	0.073	1.205	0.093	1.239	0.153
Fe2+	0.082	1.007	1.119	0.100	1.166	0.13	1.154	0.132
Mn	0	0.026	0.004	0	0.01	0.001	0.017	0.002
Са	0.003	0	0	0	0	0.001	0.004	0
Na	0.091	0.024	0.050	0.226	0.029	0.112	0.014	0.097
К	0.826	0.859	0.847	0.737	0.898	0.856	0.851	0.835
Fe/(Fe+Mg)	0.456	0.423	0.474	0.577	0.492	0.583	0.482	0.463
Sample	DH75a Bt	DH75a Ms	DH75b Bt	DH75b Ms	DH30 Bt	DH71 Bt	DH71 Ms	
Si	2.729	3.031	2.799	3.134	2.792	2.743	3.099	
AI	1.729	2.852	1.684	2.709	1.668	1.706	2.728	
Ti	0.091	0.017	0.084	0.012	0.09	0.081	0.023	
Mg	1.026	0.085	1.046	0.066	1.011	1.069	0.072	
Fe2+	1.322	0.096	1.228	0.063	1.284	1.259	0.092	
Mn	0.004	0.002	0	0	0.001	0.005	0.001	
Ca	0.001	0.001	0	0	0	0.001	0	
Na	0.04	0.236	0.059	0.238	0.052	0.048	0.325	
К	0.79	0.653	0.81	0.796	0.821	0.87	0.675	
Fe/(Fe+Mg)	0.563	0.530	0.540	0.488	0.559	0.541	0.561	

Note: Biotite Fe/(Fe+Mg) in GHS sample DH60 increases by ~0.05 next to garnet, likely as a result of retrograde garnet dissolution (estimated at 13% dissolved from the original grains). However, biotite compositions are nearly constant •1 mm away; the composition reported is for biotite ~1 mm away. In other samples, biotite Fe/(Fe+Mg) is more nearly constant (to ± 0.01), but is likely affected by retrograde reaction of the garnet, causing an increase in Fe. The importance of this effect can be evaluated from consideration of Mn-zoning profiles (Kohn and Spear, in press). The amount of garnet dissolution (in %) and estimated change to matrix biotite composition is: DH17 = 0, 0.00; DH19 = 0, 0.00; DH-22 = 0, 0.00; DH-23 = 0, 0.00; DH-26 = 0, 0.00; DH-57 = 0, 0.00; DH-58 = 45, 0.12; DH61 = 10, 0.00; DH-63 = 4, <0.01; DH-66 = 0.00; DH-67 = 10, <0.01; DH75a = 0, 0.00; DH-75b = 20, 0.04; DH-30 = 0, 0.00; DH-71 = 8, <0.01, with the original matrix biotite having a more Mg-rich composition than the current biotite. Note that a change in biotite Fe/(Fe+Mg) of 0.01 changes T by ~10-15 •C.

2001063						Supplem	ental Materi	al, Kohn et al., p.3
Mineral	compositio	ons and P-T	path mod	els of Daro	ondi rock	s, central	l Nepal	
DH17 XMg XFe XMn XCa XNa XK	Grt Rim 0.064 0.774 0.092 0.070	Grt Core 0.048 0.684 0.149 0.119	PI Rim 0.125 0.875	PI Core 0.230 0.770	Biot 0.398 0.599 0.003	Chl 0.417 0.579 0.004	Ms 0.19 0.81	
DH19 XMg XFe XMn XCa XNa XK	Grt Rim 0.064 0.788 0.039 0.110	Grt Core 0.034 0.608 0.188 0.170	PI Rim 0.230 0.770	PI Core 0.260 0.740	Biot 0.402 0.595 0.003	Chl 0.415 0.582 0.003	Ms 0.15 0.85	
DH22 XMg XFe XMn XCa XNa XK	Grt Rim 0.068 0.807 0.060 0.065	Grt Core 0.047 0.692 0.147 0.115	PI Rim 0.19 0.81	PI Core 0.19 0.81	Biot 0.389 0.610 0.001	Chl 0.410 0.588 0.002	Ms 0.175 0.825	
DH23 XMg XFe XMn XCa XNa XK	Grt Rim 0.073 0.783 0.045 0.099	Grt Int. 0.058 0.732 0.058 0.151	Grt Core 0.036 0.631 0.164 0.169	PI Rim 0.200 0.800	PI Core 0.220 0.780	Biot 0.389 0.609 0.002	Chl 0.423 0.574 0.003	Ms 0.19 0.81
DH26 XMg XFe XMn XCa XNa XK	Grt Rim 0.081 0.713 0.158 0.048	Grt Core 0.074 0.682 0.175 0.070	PI Rim 0.130 0.870	PI Core 0.130 0.870	Biot 0.455 0.542 0.003	Chl 0.479 0.516 0.005	Ms 0.18 0.82	
DH75a XMg XFe XMn XCa XNa XK	Grt Rim 0.088 0.771 0.006 0.135	Grt Int. 0.060 0.764 0.010 0.165	Grt Core 0.041 0.693 0.067 0.199	PI Rim 0.19 0.81	PI Core 0.21 0.79	Biot 0.436 0.563 0.001	Chl 0.446 0.552 0.002	Ms 0.25 0.75
DH75b XMg XFe XMn XCa	Grt Rim 0.150 0.751 0.016 0.084	Grt Int. 0.102 0.729 0.037 0.132	Grt Core 0.064 0.612 0.157 0.167	PI Rim 0.20	PI Core	Biot 0.515 0.484 0.001	Chl 0.522 0.476 0.002	Ms
XNa XK				0.80	0.79			0.14 0.86

All rocks were modeled with the observed solid assemblage Grt + Bt + Chl + Ms + Pl + Qtz in the MnNCKFMASH system. Compositional changes were derived from garnet and plagioclase compositional zoning produced as the garnet grew. A pure H₂O fluid at lithostatic pressure was also assumed to have been present. Activity models do not significantly affect the trends of retrieved P-T paths (Kohn, 1993), and all mineral solutions were assumed to be ideal, excepting garnet for which the Berman (1990) activity model was assumed. No staurolite, chloritoid, or carbonate minerals are present in these samples, either as matrix minerals or as inclusions in the garnet, nor do they occur in sub-garnet-grade rocks down section. The chemical zoning in the garnet is smooth and typical of garnet growth in the observed assemblage. Most plagioclase grains show core-rim zoning with higher-Ca cores and lower-Ca rims. This is also the expected consequence of garnet growth and fractional

2001063

Supplemental Material, Kohn et al., p.4

crystallization in a closed chemical system, as growth of garnet depletes the remaining matrix in Ca (Spear et al., 1990). Plagioclase grains in samples DH26 and DH75a/b are anomalous in that they have albite cores, that are overgrown by an oligoclase mantle that is either unzoned or slightly zoned to lower Ca towards its rim. Detrital albite grains are observed in lower-grade samples, and so we assume the albite cores in DH26 and DH75a/b are relict, that their oligoclase rims reflect metamorphic plagioclase growth, and that the decrease in X_{An} towards rims reflects garnet growth. If alternatively no change in plagioclase composition were assumed for these two samples, the calculated core pressures would be slightly higher, yielding similar exhumation paths. For some samples, an intermediate garnet composition was also used in the P-T path calculations to better account for non-linearity in the garnet zoning pattern. Paths can be equivalently modeled by using either four independently measured chemical components or two independent components coupled with mass balance constraints.

		a mage in centi ai Nepai.	
Sample	Age (Ma)	Weighted Mean Age $(Ma)^{\dagger} (\pm 1\sigma)$	$MSWD^{\ddagger}$
(monazite_spot)*	(±1 o)		
DH58a		n.c.	n.c.
5a_1	21.6 (1.5)		
5a_2	366 (21)		
DH71			
68_1 [§]	21.1 (0.8)	21.3 (0.7)	0.2
67_1 [§]	21.7 (1.2)		
DH73			
72_1 [§]	11.9 (0.6)	12.0 (0.3)	1.5
73_1 [§]	14.6 (1.5)		
73_2 [§]	11.9 (0.4)		
DH51			
108_1*	10.6 (1.2)	10.4 (0.3)	8.3
111_1 [§]	9.9 (1.2)		
109_1 [§]	9.2 (1.8)		
110_1 [§]	10.6 (0.4)		
112a_1	9.4 (1.1)		
113_1	10.1 (2.7)		
DH39			
1_1	9.8 (1.3)	8.9 (0.7)	0.7
2_1	9.8 (1.6)		
3_1	8.2 (0.9)		
DH30			
84_1 [§]	7.8 (0.9)	7.9 (0.2)	3.3
87_1	7.7 (0.4)		
87_2	6.9 (0.5)		
6_1 [§]	8.9 (0.7)		
$7_{1^{\$}}$	9.3 (0.5)		
86_1	7.8 (0.7)		
DH75B			
79sp1 [§]	7.6 (0.2)	7.9 (0.1)	10.2
78sp1 [§]	7.8 (0.2)		
77sp1 [§]	10.3 (0.9)		
82sp1 [§]	11.1 (0.7)		

Monazite ion microprobe resul	ts from rocks collected along the
Darondi drainag	e in central Nenal

* The nomenclature indicates the grain and spot, respectively, of the analyzed monazite.

† Weighted mean age, using 1σ error, of all monazite analyses from this sample; n.c. = not calculated.

 \ddagger Mean square weighted deviation using 1σ error; n.c.=not calculated.

§ Monazite inclusion in garnet.

Note: Samples analyzed using the method of Harrison et al. (1995). For sample DH58a, the one old age may reflect an earlier Paleozoic event or possibly Pb-loss from an even older event, and was not used for estimating an age for Miocene metamorphism.

2001063	3					Supplemental Material, Kohn et al., p.6
Mineral	l asseml	blages a	nd text	tures of	[°] Daroi	ndi rocks, central Nepal
	Grt	Chl	St	Ку	PI	Garnet Textures
DH16	Х	Х		-	Х	Crosscuts(?) main fol'n; weak P-shadow
DH17	Х	Х			Х	Crosscuts(?) main fol'n; weak P-shadow
DH19	Х	Х			Х	Spiral inclusion trails at angle to main fol'n; P-shadows
DH22	Х	Х			Х	Cross-cuts main fol'n; inclined inclusion trails
DH23	Х	Х			Х	Cross-cuts main fol'n
DH26	Х	Х			Х	Main fol'n warped around garnets
DH28	Х	Х			Х	Spiral inclusion trails in cores; rims overprint fabric
DH30	Х	Х				Straight inclusion trails in core, inclined to outer main
						fol'n; rims overprint(?) outer foliation
DH75	Х	X/R			Х	Well-developed spiral inclusion trails, subparallel to outer
						main fol'n at rim; well-developed P-shadows
DH33	Х	X, R				Crosscuts main fol'n
DH38	Х	X, R			Х	Crosscuts hornblende
DH39	Х	R				Crosscuts main fol'n; weak P-shadows; asymmetric
						chlorite alteration tails
DH49	Х			Х		Sigmoidal inclusion trails - may reflect overgrowth of
						earlier folds
DH51	Х		Х	Х		Well-developed P-shadows
DH73	Х		Х	Х		Overprints earlier fabric; fol'n warped around garnets
DH57	Х	R	Х	Х		Inclined inclusion trails in core; well-developed P-
						shadow; inclusions near rim parallel to crystal faces; rim
						overprints(?) matrix.
DH71	Х	R			Х	Sigmoidal inclusion trails in core; fol'n warped around
						garnets
DH58	Х	R			Х	Sigmoidal inclusion trails in cores; strongly resorbed
DH60	Х				Х	Overprints fol'n; fol'n warped around garnets
DH61	Х				Х	Crosscuts main fol'n; fol'n warped around garnets
DH66	Х				Х	Crosscuts main fol'n; fol'n warped around garnets
DH67	Х				Х	Crosscuts main fol'n; fol'n warped around garnets
DH62	Х	R			Х	Fol'n warped around garnets
DH63	Х		Х		Х	Crosscuts main fol'n
Note: A	ll sampl	es conta	in prog	rade qu	artz, m	uscovite, biotite and ilmenite. Sample DH-38 also

Note: All samples contain prograde quartz, muscovite, biotite and ilmenite. Sample DH-38 also contains hornblende (it is a metabasite). Sample DH-49 was collected near DH-51. Sample DH-56 was collected between and slightly below DH-57 and DH-71. X = a prograde mineral; R = a retrograde mineral; X,R = both prograde and retrograde present; X/R = present, but prograde/retrograde distinction unclear. P-shadow = pressure shadow; fol'n = foliation.