GSA Data Repository Item xxxx, Åhäll, Connelly and Brewer - page 1/3. Figure A: Concordia diagrams. Ellipses and errors reflect 2 sigma errors. POF = probability of fit (see Methods for discussion). ### GSA Data Repository Item xxxx, Åhäll, Connelly and Brewer – page 2/3. Table A. U-Pb results. | | | (| Concentration | | Measured | | *Corrected Atomic Ratios | | | | | | Ages [Ma] | | | | |----------------------|--|----------------------------------|--------------------------|---------------------------------|----------------------|----------------------------------|--------------------------------------|--|-----------------------|--|--|----------------------|------------------------------|------------------------------|------------------------------|--| | Fra | ction Weig | ght | U | Pb ^R | Common | ²⁰⁶ Pb | ²⁰⁸ Pb | ²⁰⁶ Pb | | ²⁰⁷ Pb | ²⁰⁷ Pb | | ²⁰⁶ Pb | ²⁰⁷ Pb | ²⁰⁷ Pb | | | | [mg] | | [ppr | n] | Pb ^T [pg] | ²⁰⁴ Pb | ²⁰⁶ Pb | ²³⁸ U | | ²³⁵ U | ²⁰⁶ Pb | | ²³⁸ U | ²³⁵ U | ²⁰⁶ Pb | | | HIS | INGEN GRANITE | | | | | | * | | | | | | | | | | | Z1
Z2
Z3
Z4 | 35 sm clr clrls euh
clr clrls euh elong
sm clr clrls euh prsm
sm clr clrls euh prsm | | 133
135 | 41.1
39.2
39.5
39.2 | 4
7
6
2 | 22639
10136
23280
39674 | 0.1641
0.1579
0.1554
0.1508 | 0.27335
0.27335
0.27128
0.26951 | 66
62
62
60 | 3.6475 86
3.6441 86
3.6163 86
3.5899 86 | 0.09669
0.09668 | 12
10
8
8 | 1558
1558
1547
1538 | 1560
1559
1553
1547 | 1563
1561
1561
1560 | | | LÄN | SMANSGÅRDEN GRANITE | | | | | | | | | | | | | | | | | Z1
Z2
Z3 | euh elong-need clr
2:1-3:1 clr euh prsm
med elong crk sub | 0.022
0.033
0.043 | 159 | 41.7
46.2
46.4 | 32
3
7 | 1694
29245
15439 | 0.1547
0.1485
0.1635 | 0.27209
0.27184
0.25587 | 80
74
54 | 3.6215 110
3.6215 98
3.4048 72 | | 14
12
12 | 1551
1550
1469 | 1554
1554
1505 | 1558
1560
1558 | | | FÖR | Ö DYKE | | | | | | | | | | | | | | | | | Z1
Z2
Z3
Z4 | 2 med clr pink single pink vsm euh need b vsm need clr euh | 0.006
0.018
0.007
0.005 | 109
65
514
473 | 32.1
19.8
130.4
120.0 | 3
6
6
4 | 4255
3438
8260
7962 | 0.1493
0.1924
0.1582
0.1586 | 0.27355
0.27326
0.23530
0.23505 | 106
76
90
86 | 3.6361 136
3.6391 110
3.0977 106
3.1001 98 | 0.09658 | 22
16
20
20 | 1559
1557
1362
1361 | 1557
1558
1432
1433 | 1556
1559
1538
1541 | | | RIV | ÖFJORD GABBRO | | | | | | | | | | | | | | | | | Z1
Z2
Z3 | clr blocky euh frags
5 med clr lt bge ang
2 lg clr lt bge ang | 0.042
0.038
0.038 | 182
112
158 | 52.9
31.9
45.2 | 18
3
11 | 7190
21454
9473 | 0.1451
0.1195
0.1368 | 0.27221
0.27187
0.27043 | 72
84
78 | 3.6165 96
3.6130 110
3.5932 104 | 0.09636
0.09638
0.09637 | 12
12
10 | 1552
1550
1543 | 1553
1552
1548 | 1555
1555
1555 | | | BÄC | KEFORS GRANITE | | | | | | | | | | | | | | | | | Z1
Z2
Z3
Z4 | b lg-med elong need
clr amber xls
med ang xls
lg-med elong-need | 0.003
0.011
0.028
0.041 | 226
384
491
490 | 67.5
112.0
143.1
139.5 | 2
3
10
10 | 5326
22372
23165
30585 | 0.1739
0.1715
0.1886
0.2053 | 0.27326
0.26768
0.26340
0.25427 | 88
122
86
88 | 3.6433 122
3.5583 162
3.5012 122
3.3674 124 | 0.09670
0.09641
0.09641
0.09605 | 14
16
12
10 | 1557
1529
1507
1460 | 1559
1540
1527
1497 | 1561
1556
1556
1549 | | All analyses are single and multigrain zircon fractions. Pb^R= Radiogenic Pb; Pb^T= Total Common Pb Abbreviations are: ang= angular; b=best; bge=beige; clr=clear; clrls=colourless; crk=cracked; elong=elongate; euh=euhedral; frags=fragments; lg=large; lt=light; med=medium size (75-100µm); need=needles; prsm=prisms; sm=small size (50-75µm); sub=subhedral; vsm=very small size (<50 µm); xls=crystals. ^{*}Ratios corrected for fractionation, 1 pg and .25 pg laboratory Pb and U blanks respectively and initial common Pb calculated using Pb isotopic compositions of Stacey and Kramers (1975). All fractions extensively abraded. Two-sigma uncertainties on isotopic ratios are reported after the ratios and refer to the final digits. ## GSA Data Repository Item xxxx, Åhäll, Connelly and Brewer - page 3/3. #### **Appendix A: Methods** Rock samples were processed at The University of Texas at Austin. They were crushed to mineral size under clean conditions using a jaw crusher, disc pulverizer and initial mineral separation used a WilfleyTM table. Heavy mineral components were processed further using sieves, heavy liquids and a FrantzTM magnetic separator. Mineral fractions were characterised using a binocular reflected-light microscope, transmitted light petrographic microscope (with condenser lens inserted to minimise edge refraction) and a scanning cathodoluminescence (CL) imaging system on a JEOL 730 scanning electron microscope. Multiple or single grains of each population were selected for analysis on the basis of optical properties to ensure that only the highest quality grains were analysed. All mineral fractions analysed were strongly abraded (Krogh 1982), subsequently re-evaluated optically and then washed successively in distilled 4N nitric acid, water and acetone. They were loaded dry into Teflon[™] capsules with a mixed ²⁰⁵Pb/²³⁵U isotopic tracer solution and dissolved with HF and HNO₂. Chemical separation of U and Pb from zircon using minicolumns (0.055 ml resin volume; after Krogh 1973) resulted in total procedural blanks of 1 and .25 pg for Pb and U, respectively. Pb and U were loaded together with silica gel and phosphoric acid onto an outgassed filament of zone-refined rhenium ribbon and analysed on a multi-collector MAT 261 thermal ionization mass spectrometer, either operating in static mode (with ²⁰⁴Pb measured in the axial secondary electron multiplier (SEM) - ion counting system) or dynamic mode with all masses measured sequentially by the SEM - ion counting system. Initial common Pb was corrected for using Stacey and Kramers (1975) and ages were calculated using decay constants of Jaffey et al. (1971). Errors on isotopic ratios were calculated by propagating uncertainties in measurement of isotopic ratios, fractionation and amount of blank with a program written by J.N. Connelly. Results are reported in Table 1 with 2 σ errors. Linear regressions were performed using the procedure of Davis (1982). The goodness of fit of a regressed line is represented as a probability of fit, where 10% or better is considered acceptable and corresponds to a Mean Square of Weighted Deviates (MSWD) of 2 or less. Ages listed in the text, table and figures are quoted with 2σ errors. #### **References Cited in Methods** - Davis, D.W., 1982, Optimum linear regression and error estimation applied to U-Pb data: Canadian Journal of Earth Sciences, v. 23, p. 2141-2149. - Jaffey, A.H., Flynn, K.F., Glendenin, L.E. Bentley, W.C., and Essling, A.M., 1971, Precision measurements of half-lives and specific activities of ²³⁸U and ²³⁵U: Physical Reviews, v. 4, p. 1889-1906. - Krogh, T.E., 1973, A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination: Geochimica Cosmochimica Acta, v. 37, p. 485-494. - Krogh, T.E., 1982, Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an abrasion technique: Geochimica Cosmochimica Acta, v. 46, p. 637-649. - Stacey, J.C. and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.