GSA Data Repository Item # 9110		
Title of article Origin of late dolomite cement by CO2-saturated deep		
basin brines: Evidence from the Ozark region, central U		
Author(s) D.L. Leach, G.S. Plumlee, A.H. Hofstra, G.F.	. Landis, et al	
see <u>Geology</u> v. 19 , p. 348 - 351		
Contents		
2 figs. and 1 table (3 pgs.)		
	•	

.

ŕ

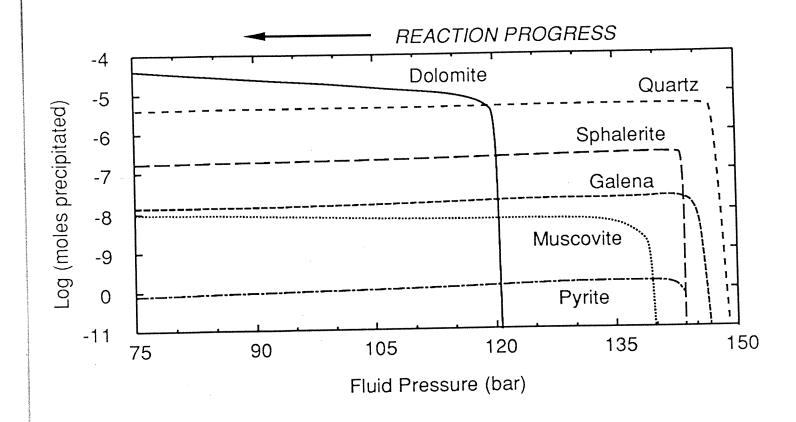


Figure 3. Log moles of minerals precipitated for each reaction step during the non isothermal boiling of reference fluid from 120 bar, 120 °C, to 75 bar, 110 °C. each reaction step is 3.75 bar and 0.5 °C.

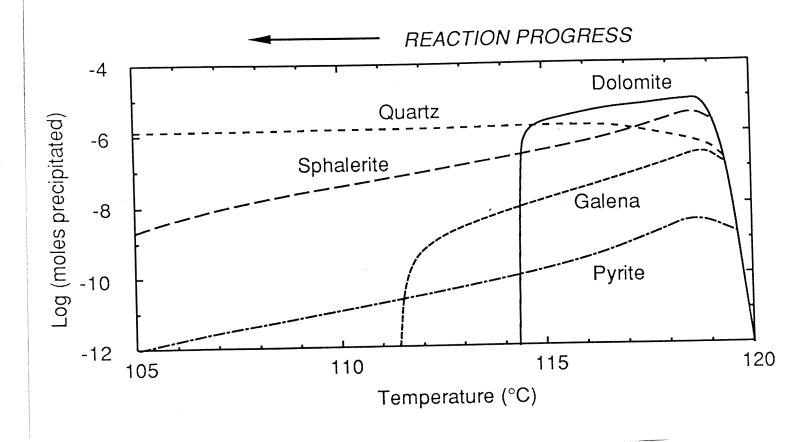


Figure 4. Log moles minerals precipitated during mixing of reference fluid at 120 °C with H2S-rich brine at 100 °C. Each reaction step mixes 0.1 kg of each fluid.

TABLE 2. SUMMARY OF RESULTS FOR SOME DOLOMITE-FORMATION REACTION PATHS.

Reaction path*	Results [†]
Boil reference fluid from 148 to 75 bar	7 x 10 ⁻³ dol, 2 x 10 ⁻⁷ musc, 2 x 10 ⁻⁴ sl, 2 x 10 ⁻⁷ gn
Boil reference fluid from 148 to 75 bar, 120 to 110 °C	1 x 10^{-4} qtz, 3 x 10^{-7} gn, 5 x 10^{-6} sl, 2 x 10^{-9} py, 1 x 10^{-7} musc, 3 x 10^{-4} dol
Boil high-CO ₂ (0.8 mol) fluid from 240 to 75 bar	3 x 10 ⁻³ dol, 5 x 10 ⁻⁷ musc, 9 x 10 ⁻⁶ sl, 6 x 10 ⁻⁷ gn, 6 x 10 ⁻¹⁰ py
Boil high-H ₂ S (0.015 mol) fluid from 150 to 75 bar	8 x 10 ⁻⁴ dol, 2 x 10 ⁻⁷ gn, 1 x 10 ⁻⁷ musc, 2 x 10 ⁻⁷ sl
Boil moderate-salinity fluid (0.8 x salinity of ref. fluid) from 119 to 75 bar	4 x 10 ⁻⁴ dol, 6 x 10 ⁻⁸ musc, 3 x 10 ⁻⁷ sl, 2 x 10 ⁻⁸ gn
Boil dilute fluid (0.2 x salinity of ref. fluid) from 64 to 40 bar	6 x 10 ⁻⁸ musc, 7 x 10 ⁻⁹ sl, 4 x 10 ⁻⁹ gn, 4 x 10 ⁻¹² py, 4 x 10 ⁻⁴ dol
Boil reference fluid at 150 °C from 150 to 75 bar	6 x 10 ⁻⁴ dol, 2 x 10 ⁻⁵ sl, 1 x 10 ⁻⁶ gn, 2 x 10 ⁻⁷ musc, 6 x 10 ⁻⁶ anh
Mix reference fluid with H ₂ S-rich fluid at 100 °C	2 x 10 ⁻⁵ dol, 4 x 10 ⁻⁵ qtz, 3 x 10 ⁻⁷ gn, 6 x 10 ⁻⁶ sl, 4 x 10 ⁻⁹ py
Cool reference fluid from 120 °C to 100 °C	2×10^{-4} qtz, 3×10^{-7} gn, 4×10^{-6} sl, 3×10^{-9} py
React reference fluid with 60 °C limestone until calcite- saturated * Reference fluid composition given in Toble 1	7 x 10 ⁻² dol, 7 x 10 ⁻⁶ qtz, 2 x 10 ⁻⁶ gn, 1 x 10 ⁻⁷ musc, 3 x 10 ⁻⁵ sl, 4 x 10 ⁻⁸ py

^{*} Reference fluid composition given in Table 1.

[†] Results in total moles of minerals precipitated for each run by one kilogram of initial fluid. Minerals are listed sequentially according to their position in the precipitation sequence: dol = dolomite, qtz = quartz, sl = sphalerite, gn = galena, py = pyrite, musc = muscovite, and anh = anhydrite.