GSA Bulletin MS# 21894, Data Repository item 2001135 Thouret et al., 'Geology of El Misti volcano near the city of Arequipa, Peru'

APPENDIX 1 A. ⁴⁰Ar / ³⁹Ar dates with analytical data

Two ignimbrites which form the basement of the Misti in the canyon of Río Chili (Fig. 2B) were dated by laser step heating on single biotite grains. Biotites from sample Mi 214 were extracted from a pumice 3 cm across in a pumice-rich unit; biotites of sample Mi 215 are idiomorphic phenocrysts from a pumice-poor unit 50 m beneath the latter. The samples were gently crushed and sieved; 800-micron-sized biotites were concentrated and grains for laser were hand-picked under a binocular microscope. Lavas from Misti mainly andesitic (Fig 6) were dated on whole rock because suitable minerals cannot be separated. About 100 mg of sample were used for high-frequency furnace step heating experiment.

The samples were irradiated in the 5C position of the McMaster University nuclear reactor (Hamilton, Canada). The samples Mi 214 and Mi215 were irradiated for 5 hours, together with the Fish Canyon Tuff sanidine (28.02 Ma; Renne et al, 1998) as neutron flux monitor. The Misti lava samples (whole rock) were irradiated for 1.5 hour with cadmium shielding together with the DRA sanidine (Wijbrans et al, 1995) as neutron flux monitor. An intercalibration of this standard with the Fish Canyon Tuff sanidine (28.02 Ma) gave us an age of 25.58 Ma that is used in this study.

⁴⁰Ar-³⁹Ar age determinations were performed by M. Fornari (IRD and UMR 6525 Géosciences Azur) at the Université de Nice, Sophia-Antipolis. Experimental techniques are described in detail by Ruffet et al. (1991) for the laser heating and by Féraud et al. (1982) for the high-frequency furnace heating procedures. The whole-rock sample analysis is performed with a mass spectrometer composed of a 120° M.A.S.S.E. tube, a Baur-Signer GS 98 source and a Balzers electron multiplier. For laser heating experiments, the gas extraction was carried out by a Coherent Innova 70-4 continuous laser. The mass spectrometer is a VG 3600 working with a Daly detector system. The typical blank values of the extraction and purification laser system are ranging from 9-5 x 10⁻¹³ ccSTP for ⁴⁰Ar, 8-1 x 10⁻¹⁴ ccSTP for ³⁹Ar, 2-1Êx 10⁻¹³ ccSTP for ³⁷Ar, and 7-3 x 10⁻¹⁴ ccSTP for ³⁶Ar, measured every third step. The criteria for defining a plateau age were the following: (1) the plateau should contain at least 70Ê% of released ³⁹Ar, (2) there should be at least three successive steps in the plateau, and (3) the integrated age of the plateau should agree with each apparent age of the plateau within a 2 sigma (2σ) interval. All errors are quoted at the 1σ level of confidence and do not include the errors on the age of the monitor. The error on the ⁴⁰Ar*/³⁹Ar_K ratio of the monitor is included in the plateau age error bar calculation (see Table1).

The Mi 214 biotite age spectrum displays a plateau age of 13.12 ± 0.05 (Fig. 1) corresponding to 77% of the ³⁹Ar released, and following a more disturbed section probably due to chloritization. The Mi 215 biotite does not give a plateau age following our criteria, but a weighted mean age of 13.8 ± 0.1 Ma calculated on 5 concordant temperature steps (corresponding to 65% of the total ³⁹Ar released) may represent the best estimate of the age of this rock. This is straigthforward due to the fact that this age is slightly higher than the plateau age displayed by the sample Mi 214 located above this formation. It is also possible that this biotite was affected by chloritization. These ages are much older than the fission track age of 2.42 ± 0.11 Ma obtained on the uppermost ignimbrite unit termed 'white sillar' (Vatin-Perignon et al., 1996).

The sample Mi 100, corresponding to a fine grained, microcrystaline lava flow with millimetric phenocrysts of amphibole, displays an age spectrum characterized by decreasing

apparent ages versus temperature, characteristic of 39Ar recoil during irradiation. However, a plateau age of 833 ± 6 ka (Fig. xB1) accounting for 74% of the total ³⁹Ar released for the temperature steps 850° to 1040° C could be obtained from the most potassic phases (probably grounmass) of the rock, as shown by the 37ArCa/39ArK spectrum (Fig. 1) -³⁶Ar/40Ar versus ³⁹Ar/40Ar correlation plot (not given) on all data displays a similar age of 833 ± 7 ka with an initial ⁴⁰Ar/36Ar ratio of 297.3 ± 1.2 of atmospheric composition, but corresponding to a low quality fitting (MSWD = 8.3).

The sample Mi 50 displays a disturbed age spectrum probably due to 39Ar recoil, but displays a plateau age of 112 ± 6 ka that represents 84.5% of the total ³⁹Ar released (steps 700-1350°C) (Fig. 1) could be obtained on the K-rich phases (last steps excepted). The ³⁶Ar/⁴⁰Ar versus ³⁹Ar/⁴⁰Ar correlation plot (not given) on the plateau fraction does not fit very well, but gives a similar age of 109 ± 4 ka with an atmospheric initial ⁴⁰Ar/³⁶Ar ratio of 296.2 ± 1.7 (MSWD = 5.2).

References

Féraud, G., Gastaud, J., Auzende, J. M., Olivet, J.L., Cornen, G. 1982, ⁴⁰Ar/³⁹Ar ages for the alkaline volcanism and the basement of the Gorringe Bank, North Atlantic Ocean: Earth Planeteray Science Letters, 57, 211-226.

Hall, C. M., Walter, R. C., Westgate, J. A., York, D., 1984, Geochronology, stratigraphy and geochemistry of cinder tuffs in Pliocene hominid-bearing sediments of the Middle Awawsh Ethiopia: Nature, 308, 26-31.

Ruffet, G., Féraud, G., Amouric, M., 1991, Comparison of 40Ar-39Ar conventional and laser dating of biotites from the North Trégor Batolith: Geochimica Cosmochimica Acta, 55, 1675-1688.

Renne, P.R., Swisher, C.C., Deino, A.L., Karner, B.D., Owens, T, De Paolo D.J., 1988,

Intercalibration of standards, absolute ages and uncertainties in 40 Ar/ 39 Ar dating: Chemical Geology, 145, 117-152.

Wijbrans, J. R., Pringle M. S., Koppers A. A. P., & Scheveers R., 1995, Argon geochronology of small samples using the Vulkaan laser-probe: Proceedings Koniinkje Nederlandse Akademie Wetenschappen, v. 98, p.185-218.

APPENDIX 1 B. Thermoluminescence dating method (M. Frechen)

All measurements were carried out on the 4-11 μ m grain-size fraction using the preparation technique described in Frechen et al. (1996) for all samples. All samples were irradiated in eight different dose steps (five discs per dose step) using a Cobalt-60 source. Alpha irradiation was undertaken by a 241Am source to determine the alpha effectiveness (avalue). As the 1-sigma standard deviation of the measured palaeodose equivalents of the avalues were large due to large scattering of the glow curves, an average value of 0.01 ± 0.002 was used for all samples. After irradiation all fine grain samples were preheated at 150° C for 16 hours in order to eliminate the unstable part of the glow curves. All discs were left at room temperature for at least 4 weeks after irradiation. Measurements were carried out using an automated Risö TL/OSL Reader. A filter combination of Schott BG-39 and Chance Pilkington HA-3 was placed between photomultiplier and aliquots. After the 25 seconds of IR shine down, carried out by an array of 32 diodes emitting a wavelength of 880 \pm 80 nm, the same discs were measured immediately by TL. The aliquots were measured with a heating

rate of 5°C/sec up to 450° C. Equivalent doses were obtained for the tephra samples by additive dose methods by integrating the 300-400°C range and the age plateau which is defined in an equivalent dose plot larger than 50°C yielding constant ED values (Berger 1991).

Luminescence Methods

Further information about principles of TL are found in Aitken (1985) and Wintle (1997). Thermoluminescence (TL) and Optical Stimulated Luminescence (OSL) is the light emitted from crystals like quartz, feldspar or zirconium when they are heated or stimulated with light after receiving a natural or artificial radiation dose. In nature the radiation results from the decay of radioactive isotopes like 235U, 238U, 235Th, 40K and some minor isotopes and cosmic rays. The luminescence clock (signal) is set to zero for volcanic material in respect to heating up of the minerals or growth and cooling of minerals and volcanic glass after eruption. With respect to volcanic glass the last cooling date of the minerals or glass or the eruption age will be determined.

The dating of volcanic material was attempted in the early 1970s when Wintle (1973) described anomalous fading by measuring feldspars from rhyolites near Naples and basalts from Iceland and France. Since that time it has been difficult to overcome the problem of anomalous fading which is understood as a rapid initial fading of the signal from feldspar after irradiation. This complicating property does not seem to conform a simple time dependent behaviour. A rapid initial fading is followed by a much slower TL loss with time. In the case of the Misti pumice samples, a delay of at least 4 weeks was applied between irradiation and TL measurements in order to minimise the effect of fading.

References

Aitken, M.J., 1985, Themoluminescence Dating: Academic Press, pp. 1-365, London.

Berger, G.W., 1991, The use of glass for dating volcanic ash by thermoluminescence: Journal of Geophysical Research, 96, 19705-19720.

Frechen, M., Schweitzer, U., and Zander, A., 1996, Improvements in sample preparation for the fine grain technique: Ancient TL, 14, 15-17.

Wintle, A.G.,1973, Anomalous fading of thermoluminescence in mineral samples: Nature, 245, 143-144.

Wintle, A.G., 1997, Luminescence dating: laboratory procedures and protocols: Radiation Measurements, 27, 769-817.

App. 1A - Table 1: Ar dating analytical data.

Single grain laser step heating; irradiation MC23, 5h

interfering reactions: $^{40}\text{Ar}/^{39}\text{K} = 0.0297$, $^{36}\text{Ar}/^{37}\text{Ca} = 0.000284$, $^{39}\text{Ar}/^{37}\text{Ca} = 0.000706$

Step nb. or T °C	Atmospheric contamination (³⁹ Ar (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	$^{40}{\rm Ar}^*/^{39}{\rm Ar}_{ m K}$	Ag	e (N	Ia)
	Mi 214, Biotite ;	I = 13.24 : (v13)	363)				
1	97.24	0.37	0.065	2.987	6.43	±	3.80
2	94.70	0.68	0.045	2.039	4.39	±	1.60
3	88.13	0.63	0.048	3.531	7.60	±	1.15
4	76.90	0.71	0.025	5.120	11.01	±	1.08
5	60.30	1.44	0.016	6.025	12.95	±	0.65
6	52.99	1.80	0.017	6.031	12.96	±	0.38
7	39.92	4.28	0.014	6.295	13.52	\pm	0.22
8	31.09	5.29	0.017	6.311	13.56	\pm	0.15
9	28.18	6.92	0.025	6.279	13.49	\pm	0.13
10	22.52	10.19	0.033	6.142	13.20	\pm	0.07
11	17.82	17.13	0.047	6.131	13.17	\pm	0.06
12	18.56	11.46	0.063	6.117	13.14	\pm	0.06
13	17.74	9.20	0.062	6.084	13.07	\pm	0.08
14	17.63	9.36	0.065	6.105	13.12	\pm	0.09
15	17.70	8.15	0.144	6.096	13.10	\pm	0.08
16	17.10	11.79	0.136	6.062	13.03	\pm	0.07
Fuse	23.46	0.59	0.123	5.987	12.87	±	0.98
				integra	ated age 12	2.91	± 0.04
Sample 1	Mi 215, Biotite ;	J = 13.0 (v136)	2)				
1	98.40	1.33	0.023	2.952	6.45	\pm	2.88
2	89.11	0.27	0.000	4.689	10.24	\pm	3.06
3	82.66	2.58	0.021	4.734	10.34	±	0.60
4	74.52	3.88	0.014	5.567	12.15	±	0.29
5	54.62	3.04	0.016	6.054	13.21	\pm	0.29
6	61.13	5.94	0.017	5.923	12.92	±	0.29
7	48.23	9.11	0.021	6.328	13.80	±	0.14
8	42.75	9.85	0.034	6.369	13.89	±	0.14
9	38.42	10.39	0.035	6.331	13.81	±	0.11
10	33.02	25.58	0.026	6.320	13.79	±	0.08
11	27.15	10.14	0.062	6.317	13.78	±	0.11
12	24.06	15.09	0.159	6.149	13.46	±	0.09
12 13	32.92	2.14	0.166	6.026	13.19	\pm	0.49
12				6.026 6.153	13.19 13.46	± ±	0.49 1.08
12 13 fuse	32.92 39.34	2.14 0.67	0.166 0.249	6.026 6.153 integra	13.19 13.46 ated age	± ± 13.3	0.49 1.08 31 ± 0.06
12 13 fuse	32.92 39.34	2.14 0.67	0.166	6.026 6.153 integra	13.19 13.46 ated age	± ± 13.3	0.49 1.08 31 ± 0.06
12 13 fuse	32.92 39.34 requency furna	2.14 0.67 ce step heating	0.166 0.249	6.026 6.153 integra (IC21): 1.5 h w	13.19 13.46 ated age ith Cd sh	± 13.3	0.49 1.08 31 ± 0.06 ding
12 13 fuse High fi	32.92 39.34 requency furna	2.14 0.67 ce step heating 0Ar/39K = 0.0	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca =	6.026 6.153 integra (IC21): 1.5 h w	13.19 13.46 ated age ith Cd sh	± 13.3	0.49 1.08 31 ± 0.06 ding
12 13 fuse High fi	32.92 39.34 requency furna ring reactions: 4	2.14 0.67 ce step heating 0Ar/39K = 0.0	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca =	6.026 6.153 integra (IC21): 1.5 h w	13.19 13.46 ated age ith Cd sh	± 13.3	0.49 1.08 31 ± 0.06 ding
12 13 fuse High fi interfer Sample I	32.92 39.34 requency furnating reactions: ⁴ Mi 100, Whole Ro	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J =	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 138.0 (M1236)	6.026 6.153 integra 4C21): 1.5 h w 0.000279, ³⁹ Ar	13.19 13.46 ated age ith Cd sh /37Ca = 0	± 13.3 nielo	0.49 1.08 31 ± 0.06 ding
12 13 fuse High fi interfer Sample I 400	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Ro	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J =	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 38.0 (M1236) 0.748	6.026 6.153 integra 4C21): 1.5 h w 0.000279, ³⁹ Ar 3.806	13.19 13.46 ated age ith Cd sh /37Ca = 0	± 13.3 nielo 0.00	0.49 1.08 31 ± 0.06 ding 00706 16.527
High finterfer Sample M	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Ro 99.88 98.70	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 4 38.0 (M1236) 0.748 0.354	6.026 6.153 integra 1C21): 1.5 h w 0.000279 , 39 Ar 3.806 2.206	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495	± 13.3 nielo 0.00 ± ±	0.49 1.08 81 ± 0.06 ding 00706
12 13 fuse High fi interfer Sample I 400 500 550	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 6 38.0 (M1236) 0.748 0.354 0.491	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926	± ± 13.3 nielo 0.00 ± ± ±	0.49 1.08 31 ± 0.06 ding 0706 16.527 0.630 0.314
12 13 fuse High fi interfer Sample I 400 500 550 600	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29 1.66 1.29	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 38.0 (M1236) 0.748 0.354 0.491 0.753	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800	± ± 13.3 nielo 0.00 ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.126
12 13 fuse High fi interfer Sample I 400 500 550 600 650	32.92 39.34 requency furna ing reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29 1.66 1.29 2.23	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215	13.19 13.46 ated age ith Cd sh /37Ca = 0 2.579 1.495 0.926 0.800 0.824	± ±13.3 nielo 0.00 ± ± ± ± ±	0.49 1.08 31±0.06 ding 10706 16.527 0.630 0.314 0.126 0.033
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339	13.19 13.46 ated age ith Cd sh /37 Ca = (2.579 1.495 0.800 0.824 0.908	± ±13.3 nielo).00 ± ± ± ± ± ±	0.49 1.08 81 ± 0.06 ding 90706 16.527 0.630 0.314 0.123 0.015 0.011 0.004
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700 750	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 138.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301	13.19 13.46 ated age ith Cd sh /37Ca = 0 2.579 1.495 0.926 0.800 0.824 0.908 0.882	± ± 13.3 nield).000 ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31±0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700 750 850 950 1040	32.92 39.34 requency furna ing reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42	0.166 0.249 g; Irradiation (No.1, 36Ar/37Ca = 1.238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767	6.026 6.153 integra 1C21): 1.5 h w 0.000279 , 39 Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.800 0.824 0.908 0.882 0.882 0.882 0.882 0.882	± ± 13.3 nielo 0.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 81±0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.004
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700 750 850 950 1040 1150	32.92 39.34 requency furna ring reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.242 1.222 1.125	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.800 0.824 0.908 0.882 0.882 0.822 0.822 0.822	± ± 13.3 nielo 0.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31±0.06 ding 00706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700 750 850 950 1040 1150 1300	32.92 39.34 requency furna ing reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.823 0.763 0.927	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.0048 0.102
12 13 fuse High fi interfer Sample I 400 500 550 600 650 700 750 850 950 1040 1150	32.92 39.34 requency furna ring reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351	6.026 6.153 integra AC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082
12 13 fuse High fi interfer Sample II 400 500 650 700 650 750 850 950 1040 1150 1300 1450	32.92 39.34 requency furna ring reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67	2.14 0.67 ce step heating 0Ar/39K = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 4 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196	6.026 6.153 integra AC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.823 0.763 0.927	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082
12 13 fuse High fi interfer Sample I 400 500 650 700 650 750 850 950 1040 1150 1300 1450 Sample II	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Responses 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J =	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196	6.026 6.153 integra AC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 850 950 1040 1150 1300 1450 Sample II 400	32.92 39.34 requency furna ing reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J =	0.166 0.249 g; Irradiation (No.1, 36Ar/37Ca = 1.238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 : 39.5; (M1233)	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.906 0.824 0.908 0.842 0.842 0.822 0.828 0.763 0.927 1.054 d age 0.83	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 850 950 1040 1150 1300 1450 Sample II 400 500	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 : 39.5; (M1233) 1.047 0.383	6.026 6.153 integra 1C21): 1.5 h w 0.000279 , 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054	± ± 13.3 nield 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082
12 13 fuse High fi interfer Sample I 400 500 650 700 750 850 950 1040 1150 1300 1450 Sample M 400 500 550	32.92 39.34 requency furna ring reactions: ⁴ Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16	0.166 0.249 g; Irradiation (Mo1, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 39.5; (M1233) 1.047 0.383 0.492	6.026 6.153 integra 1C21): 1.5 h w 0.000279 , 39 Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.222 1.125 1.368 1.556 integrate	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.822 0.842 0.822 0.822 1.054 d age 0.83	± ± 13.3 nielo 0.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.125 0.011 0.004 0.004 0.004 0.004 0.0082 0.082 0.010
12 13 fuse High fi interfer Sample I 400 500 650 750 850 950 1040 1150 1300 1450 Sample M 400 500 650 600	32.92 39.34 requency furnaring reactions: 4 Mi 100, Whole Royell 8.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roce 100. 100. 100. 100. 97.90	2.14 0.67 ce step heating 0Ar/39K = 0.0 ock (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29	0.166 0.249 g; Irradiation (Mo1, 36Ar/37Ca = 1638.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 g; Irradiation (M1236) 1.047 0.383 0.492 0.549	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.842 0.822 0.822 0.828 0.763 0.927 1.054 dd age 0.83	± ± 13.3 nielo 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082 0.010
12 13 fuse High fi interfer Sample II 400 500 650 750 850 950 1040 1150 1300 1450 Sample II 400 500 650 660	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Rosell 100, 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Rosell 100, 100, 100, 100, 97.90 84.18	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42	0.166 0.249 g; Irradiation (No1, 36Ar/37Ca = 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 39.5; (M1233) 1.047 0.383 0.492 0.549 0.549	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 d age 0.83	± ± 13.3 nielo 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082 0.010
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 1300 1450 Sample II 400 500 550 600 600 650 700	32.92 39.34 requency furna ing reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roc 100. 100. 100. 97.90 84.18 68.88	2.14 0.67 ce step heating 0Ar/39K = 0.0 0ck (99 mg) J = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22	0.166 0.249 g; Irradiation (No1, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 : 39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489	6.026 6.153 integra IC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 dd age 0.83	± ± 13.3 nielo 0.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082 0.010 0.007 0.003
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 850 1040 1150 1300 1450 Sample II 400 500 550 600 650 700 750	32.92 39.34 requency furna ring reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roc 100. 100. 100. 100. 97.90 84.18 68.88 82.45	2.14 0.67 ce step heating 0Ar/39K = 0.0 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22 12.84	0.166 0.249 g; Irradiation (Mo1, 36Ar/37Ca = 1238.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489 0.427	6.026 6.153 integra 1C21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168 0.170	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.822 0.822 0.822 0.823 0.763 0.927 1.054 d age 0.83	± ± 13.3 nielo 0.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.125 0.011 0.004 0.009 0.048 0.102 0.082 0.010 0.007 0.003 0.010
12 13 fuse High fi interfer Sample I 400 500 650 700 650 750 850 950 1040 1150 1300 1450 Sample M 400 500 650 700 650 750 850 600 650 700 750 850	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Research 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roce 100. 100. 100. 100. 97.90 84.18 68.88 82.45 71.17	2.14 0.67 ce step heating 0Ar/39K = 0.00 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22 12.84 31.06	0.166 0.249 g; Irradiation (M 01, 36Ar/37Ca = 128.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 2.39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489 0.427 0.429	6.026 6.153 integra Integra	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 d age 0.83	± ± 13.3 nielo).000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.105 0.011 0.004 0.004 0.004 0.0082 0.010 0.007 0.003 0.010 0.007 0.003 0.005 0.003
12 13 fuse High fi interfer Sample II 400 500 650 750 850 950 1040 1150 1300 1450 Sample II 400 500 650 700 650 750 850 950 650 750 850 950	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Research 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roce 100. 100. 100. 100. 100. 97.90 84.18 68.88 82.45 71.17 78.97	2.14 0.67 ce step heating 0Ar/39K = 0.0 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) 0.00 1.42 3.16 3.29 5.42 11.22 12.84 31.06 15.16	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 1 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 : 39.5; (M1233) 1.047 0.383 0.492 0.549 0.549 0.547 0.489 0.427 0.429 0.774	6.026 6.153 integra IC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168 0.170 0.165 0.144	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.822 0.828 0.763 0.927 1.054 dage 0.83	± ± 13.3 nielo 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.082 0.010 0.007 0.003 0.003 0.003 0.003 0.003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 1300 1450 Sample II 400 500 550 600 650 700 750 850 950 1050	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Rosell 100, 82.9 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Rosell 100, 100, 100, 100, 100, 100, 100, 10	2.14 0.67 ce step heating 0Ar/39K = 0.0 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22 12.84 31.06 15.16 5.67	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 2.39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489 0.427 0.429 0.774 1.717	6.026 6.153 integra IC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168 0.170 0.165 0.144 0.128	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 d age 0.83	± ± 13.3 nielo 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.082 0.010 0.010 0.007 0.003 0.005 0.003 0.005 0.003
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 850 950 1040 1150 1300 1450 Sample II 400 500 550 600 650 700 750 850 950 1050 1200	32.92 39.34 requency furna ing reactions: 4 Mi 100, Whole Ro 99.88 98.70 98.29 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Roc 100. 100. 100. 100. 17.90 84.18 68.88 82.45 71.17 78.97 96.69 98.12	2.14 0.67 ce step heating 0Ar/39K = 0.0 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22 12.84 31.06 15.16 5.67 3.08	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489 0.427 0.429 0.774 1.717 2.656	6.026 6.153 integra IC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.368 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168 0.170 0.165 0.144 0.128 0.173	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 dd age 0.83	± ± 13.3 nielo 1.00 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 00706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.048 0.102 0.010 0.007 0.003 0.005 0.003 0.004 0.007 0.003
12 13 fuse High fi interfer Sample II 400 500 550 600 650 700 750 1300 1450 Sample II 400 500 550 600 650 700 750 850 950 1050	32.92 39.34 requency furnating reactions: 4 Mi 100, Whole Rosell 100, 82.9 96.32 84.65 62.35 61.53 33.59 24.76 56.69 87.45 94.09 92.67 Mi 50, Whole Rosell 100, 100, 100, 100, 100, 100, 100, 10	2.14 0.67 ce step heating 0Ar/39K = 0.0 1.29 1.66 1.29 2.23 4.01 10.87 38.24 25.50 10.42 1.92 0.80 1.77 k (134 mg) J = 0.00 1.42 3.16 3.29 5.42 11.22 12.84 31.06 15.16 5.67	0.166 0.249 g; Irradiation (N 01, 36Ar/37Ca = 38.0 (M1236) 0.748 0.354 0.491 0.753 0.728 0.598 0.445 0.347 0.442 0.767 1.351 2.065 2.196 2.39.5; (M1233) 1.047 0.383 0.492 0.549 0.547 0.489 0.427 0.429 0.774 1.717	6.026 6.153 integra IC21): 1.5 h w 0.000279, 39Ar 3.806 2.206 1.366 1.180 1.215 1.339 1.301 1.243 1.212 1.222 1.125 1.368 1.556 integrate 0.033 0.128 0.168 0.170 0.165 0.144 0.128	13.19 13.46 ated age ith Cd sh /37Ca = (2.579 1.495 0.926 0.800 0.824 0.908 0.882 0.842 0.822 0.828 0.763 0.927 1.054 d age 0.83	± ± 13.3 nielo 0.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.49 1.08 31 ± 0.06 ding 10706 16.527 0.630 0.314 0.126 0.033 0.015 0.011 0.004 0.009 0.082 0.010 0.007 0.003 0.005 0.003 0.005 0.004 0.004 0.005

The whole rock sample analysis is performed with a mass spectrometer composed of a 120° M.A.S.S.E. tube, a Baur-Signer GS 98 source and a Balzers electron multiplier. For laser heating experiments, the gas extraction was carried out by a Coherent Innova 70-4 continuous laser. The mass spectrometer is a VG 3600 working with a Daly detector system. The typical blank values of the extraction and purification laser system are ranging from 9-5 x 10-13 ccSTP for 40Ar, 8-1 x 10-14 ccSTP for 39Ar, 2-1 x 10-13 ccSTP for 37Ar, and 7-3 x 10-14 ccSTP for 36Ar, measured every third step.

App. 1A - Fig. 1

App. 2B
(After Legendre, 1999)