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APPENDIXES

1 The Reynolds Number Re

The Reynolds number Re is the ratio of inertial to viscous forces acting on an infinitesimal fluid

element (Reynolds, 1883), and is defined by

Re = PLW (Al.1)
B

where p is the density of the fluid, L is a characteristic linear dimension of the system, W is a
characteristic fluid velocity, and p is the dynamic viscosity of the fluid. For a coordinate system centered
on a body immersed in a fluid involving steady, relative motion between them, W normally is taken as
the free-stream velocity far from the body. In the present context, Wis equal in magnitude to the settling
speed. The choice of the dimension L is somewhat arbitrary, so long as it is applied consistently. When
comparing geometrically similar systems, L is a geometrically corresponding dimension common to the
systems. In the case of spheres, which are by definition geometrically similar, L is usually taken as the
sphere radius or diameter. In the case of a foraminifer, it is convenient to choose the radius R.

2 The Coefficient of Drag C,

Dimensional analysis leads to the result that the total surface force on a body immersed within
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a fluid due to steady relative motion between the body and fluid and acting in the direction of the relative
motion—the drag force F,—can be written in terms of a dimensionless coefficient of drag C,. This
coefficient can be defined more than one way (for example, Tritton, 1988, p. 93-95; Furbish, 1997, p.
128-130), and it is a matter of convenience to choose a form that can be readily applied to both small and
large Reynolds numbers. Whereas the work presented in this paper is largely concerned with small
Reynolds numbeI: (viscous) flows, we also are interested in flows near (and greater than) a Reynolds
number of unity. The coefficient C,, then, is formed as the ratio of the drag force F, to the product of
the dynamic pressure of the flow %pW? and the square of the characteristic length, that is L2. Constants
in this dimensionless quantity are arbitrary, so it is customary to replace L? by a characteristic area, the
silhouette area normal to the flow, which involves the constant = in the case of a sphere. We therefore
define C, by (2) in the text using L = R. Note that it is not essential for the quantity #R® in the
denominator of (2) to equal the true silhouette area of a foraminifer. This condition, however, is satisfied
in the limiting case of a spherical test (and surrounding protoplasm) without spines.

Substituting (1) for Re in (3), then equating the resulting expression with (2) and solving for £},
one obtains the result of Stokes (1851), that F;, = 6wuRW.
3 Statistical Similitude

A foraminifer has the shape of a sphere, and therefore possesses spherical symmetry, in the limit
where n, [ or r approaches zero. With one to three spines, however, associated planes of symmetry do
not separate a foraminifer into hemispheres having spherical symmetry. This means, for example, that
the drag on a foraminifer that is settling parallel to a plane containing three spines is in general different
than the drag when it is settling normal to this plane, because the test-spine silhouettes normal to the
relative fluid motion are different. Dynamical similitude is not satisfied for arbitrary rotation of the
foraminifer. In contrast, a tetrahedral geometry (four spines) begins to render a sense of quasi-spherical

symmetry; test-spine silhouettes normal to W are, for arbitrary rotations, more nearly alike than in the
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three-spine case such that the total drag varies less with different orientations relative to the settling
motion. With an increasing number of spines, we expect that the exact orientation of a foraminifer
during settling becomes less significant in terms of its influence on the total drag. The relation between
total drag and the symmetry of settling objects is fully examined by Happel and Brenner (1986, p. 159-
234).

4 Qualitative Assessment of the Exponents a, b and ¢

Consider the drag associated with an isolated spine. The drag force per unit length of a spine
(treated as a right circular rod) oriented normal to the flow vanes approximately with 7'* over the domain
0.01 < Re < 1. (Appendix 10 provides an exact expression for the relation between drag and Re.)
Therefore the drag force on a spine with length / varies with /r'°, and the total drag on n independent
spines oriented normal to the flow varies with nlr'?. If spines acted independently and additively, drag
would therefore increase with the first power of » and /, and the 1/5 power of r, neglecting effects of
spine orientation relative to the mean motion.

Now, for moderate to large n, the drag on a foraminifer due to spines is much greater than the
drag associated with a test that is otherwise isolated from its spines. As n, / or r increases, the fluid
therefore "sees" less of the test, and more of the spines; the total drag is essentially equal to that whi;:h
would occur if the spines radiated from a point. A settling foraminifer drags a blob of liquid with it.
Near the test, therefore, differential motion between fluid and spines is minimal, and only the outer parts
of spines contribute to increasing drag directly associated with viscous fluid motion around the spines.
The spines contribute indirectly to increasing drag, however, by increasing the size of the settling system-
-the test and spines plus fluid blob—such that viscous forces operate over a larger fluid volume.

For given R, / and r, an incremental increase in the number of spines when » is small leads to
a significant increase in the total length of spines / contributing directly to drag, and in the size of the

fluid blob. However, the proportion of / of an individual spine contributing directly to drag decreases,
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because the region of small differential motion between fluid and spines near the test is enlarged. A

similar incremental increase in the number of spines when 7 is large, in contrast, does not enlarge the

fluid blob as much, whereas the region of small differential motion between fluid and spines near the test

is enlarged. The net effect is likely to give @ < 1. For given R, n and r, short spines are essentially
enclosed within the fluid blob associated with the test, and an incremental increase in / does not add
significant drag. As [ increases, the proportion of the spine length that adds directly to drag increases,

because the outer parts of spines become increasingly separated and extend into a region of greater

differential motion between the fluid and spines. The fluid blob also grows. The net effect is likely to '
give b = 1. Of the three effects associated with increasing »n, / and r, the effect of increasing r (for
given R, n and ) should be most like that expected for an isolated spine, because an increase in drag

associated with an increase in r is li.kely to be most significant near the outer parts of the spines. We

therefore may anticipate that ¢ < 1.

5 Regression Analysis

Equation (13) can be linearized to
m[ﬁ - 1) = InC, + aln(n - n,) + blnA + clnP (A5.1)
12

For constant A and P, the last two terms are absorbed into the constant term. Simple linear regression
involving measured values of the left side of (AS5.1) and values of In(n - n)) then retrieves a as the
estimated regression coefficient. The value of n, is selected by systematically varying this coefficient
until it provides the "best" fit to the data (Figure 3a). These estimates are n, = 4.5 and @ = 0.476. For
constant 7 and P, terms involving @ and ¢ are absorbed into the constant term. Simple linear regression
then retrieves the estimate b = 1.992 (Figure 3b). After pooling the data in Figure 3, multiple linear
regression using the full model (A5.1) retrieves the estimates G, = 0.584, ny = 4.5,a = 0.478, b =

1.992 and ¢ = 0.596. This fit gives a coefficient of determination equal to 0.998; although this provides
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a qualitative measure of the closeness of the fit, statistical significance should not be placed on it. In this
regard, the standard error of the estimate of a is 0.0189, which is about a four percent change in a. We
report this here only for the purpose of translating variations in a to variations in settling velocity at large
n (see text).

6 Zero Relative Settling Speed

The ratio (W - Wp)/ Wy is formed from (12), where W, denoting the settling speed of a spherical
test (and protoplasm) without spines, is obtained by setting A in (12) to zero. Setting the ratio (W -

Wp)/ Wy to zero gives

3(ps - P, )(R-R) uP? 3(p; - p)

nAP? - C.(n - n,)°A’P°¢ = 0 (A6.1)
4(pg - P)R 4(py - p) 0 !

which is independent of fluid viscosity. The solution of (A6.1) defines the set of n-A coordinate pairs
for which a spinose foraminifer settles at the same rate as an otherwise identical foraminifer without
spines.

7 Sensitivity Functions S,, S; and S,

The sensitivity functions S,, Syand S, are given by

1-(1 - ¢)(5) - 3(1 - ﬁlnpz

2gR?
g aw ¢ ®) "2 R (A7.1)
P dp, 9u[l + Cy(n - ny)*A"F]
\ 2gR2(1 + 2nAp?
.= W __ 4 (A7.2)
7dp o[l + Gy(n - AP
s, = aw _ v (A7.3)
T

where W in (A7.3) is given by (12). Notice that S, is independent of the protoplasm density o,, and S;
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is independent of the fluid density p.

8 Extrema of the Settling Speed W

Taking the partial derivative dW/dn of (12) and setting this result to zero, any local extremum

associated with variations in n for constant A and P must satisfy the condition:

(n - n)* -aln+ Hox - ©) (n - n)*?
R
3|(p, - pp)(l - E’) + (p, - p)A]P2
1
+ = A8.1
C AP P° (A8.D

The spine number nyy associated with an extremum can be obtained from (A8.1) numerically. Taking

the partial derivative dW/8A of (12) and setting this result to zero, any local extremum associated with

variations in A for constant » and P must satisfy the condition:

Ab ol 4= . b(p - py) [1 ) 5} -
3(b - 1)(p, - p)nP? (b - 1)(p; - p) R
1
- =0 (A8.2)
(b - DCy(n - n)F

Our experiments suggest that b = 2. Then, the dimensionless spine length Agy = [3/R associated with

an extremum can be obtained from (A8.2) using the quadratic formula. Namely,

2 1
| 4pr=p) . (p, - p,,)( R,] 1 :
Aow = 3 > F ~ 1-—= ~ P
(p, - p)nP (ps — P) R (b - 1)Cy(n - n))*F*
| AGr-0) (o, - p) [1 i} 5_:) (A8.3)
3(p, - p)nP*  (p; — P) R
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which is a positive real root. A similar condition can be written for extrema associated with variations
in r; however we do not consider this further.

More generally, (A8.1) and (A8.2) define two equations that must be satisfied simultaneously for
existence of a global extremum in W over the full nA-domain. Notice that, whereas W (and W) vary
with both fluid and foraminifer properties according to (12), ngy and Ay are independent of fluid
viscosity according to (A8.1) and (A8.2).

9 Extrema of the Sensitivity Functions S, and S,
Taking the partial derivative 35,/dn of (A7.1) and setting this result to zero, any local extremum

associated with variations in n for constant A must satisfy the condition

R 3
4 -4 - (b)(—-f]
(n-mn) -ajn - R (n-n)"t+ lb - =0 (A9.1)
3(1 ) ﬁ]pz C,A’P :
R

The spine number n,, associated with an extremum can be obtained from (A9.1) numerically. Numerical
analysis indicates that the Toot 1z, OCCUIS only at very large n (n, > 10%) for realistic values of physical
properties of foraminifera. Taking the partial derivative dS,/dA of (A7.1) reveals that local maxima of
§, occur in the limit A = Ay, = 0. Thus the settling speed of a foraminifer with given R is most sensitive
to changes in the density of its protoplasm when the exposed length of its spines / approaches zero.
Taking the partial derivative dS/0n of (A7.2) and setting this result to zero, any local extremum

associated with variations in z for constant A must satisfy the condition

)(n -+ 1 .o (A9.2)

(n-n) -aln+ 4
3AP? C AP P°

The spine number 71y, associated with an extremum can be obtained from (A9.2) numerically. Numerical
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analysis indicates that the root ry is effectively zero for all A. Taking the partial derivative 3S/8A of
(A7.2), setting this result to zero and assuming that b = 2, the coordinate Ay, of any local extremum

associated with variations in A for constant z can be obtained using the quadratic formuia:

f R 1

N

;o i
Bor = { 3:P2 J ' Co(n -1 n,)°P* ) 3:P2 4
which is a positive real root. Because P is on the order of 10? for real (and modeled) foraminifera, the
second term within the brackets generally is much smaller than the first term. Thus the root Ay generally
is very close to a value of zero for n < 10%, and can be neglected.
10 Conditions of Spine Breakage

Consider a foraminifer with six spines possessing cubic symmetry, where the axes of four spines
are normal to the settling motion. With r < R, there is negligible interaction among spines, and the
"background" velocity field in the vicinity of the test is well approximated by that associated with a
spherical test without spines. This field is, of course, locally modified in the immediate vicinity of each
spine. Consider a coordinate system that moves with the foraminifer; the z-axis is parallel to the motion
of the foraminifer, and the radial x-axis is normal to the motion. The origin of the coordinate system is
centered on the foraminifer. The fluid velocity component w of the background field, parallel to the

settling motion and in the plane of the origin (z = 0), is given by the solution provided by Stokes (1851):
3
w(x) = W[l 3R _ _1_5_) (A10.1)
x
Here, W is the global far-field velocity, which is equal to the settling speed.

For a spine treated as a right-circular rod with radius r, it is convenient to define a coefficient

of drag Cp, for a unit length of the spine (for example, see Batchelor, 1967; p. 244-246):
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o (A10.2)

prv?

C
Dr

where F, is a drag force per unit length of spine and V is a characteristic fluid velocity. Theory and

experiments suggest that (for example, see Batchelor, 1967; p. 244-246, 261)

3.7) (A10.3)

where the Reynolds number Re, is

Re = PV (A10.4)

r

B

The drag force F, is then

_ 4muV

s n 37 (A10.5)
pr¥V

Each spine on a foraminifer that experiences fluid drag is mechanically equivalent to a cantilever.
The largest background fluid velocities occur at positions z = 0. Morover, the lever arm associated with
the drag induced by these velocities has its maximum length when a spine axis is normal to the settling
motion. For these reasons we may assume that such a spine experiences the largest torque due to fluid
drag, and therefore has the greatest chance for failure if properties of mechanical strength are the same
among spines. The conditions of failure of a spine oriented normal to motion therefore define the
limiting conditions for which all spines remain intact.

Consider a small interval dx on a horizontal spine at a radial distance x. With r < R, the
boundary layer associated with the interval dx, viewed in isolation, has a "local" far-field velocity that

is given by the background velocity w(x) at the same radial distance x. This background velocity serves
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as the characteristic velocity V in (A10.4) and (A10.5), and we therefore denote V' = w(x; W), where the
appearance of W after the semicolon emphasizes the importance of this parameter.
The small quantity of drag dF, on dx is F,dx, and the contribution dr to the total torque 7

measured relative to the base of the spine is dr = F(x - R)dx. The total torque 7 is therefore

_ R+ w(x; W) (x - R:)
T =4z uJR 375
ln(-———' ) - Inw(x; W)
pr

(A10.6)

where w(x;W) is given by (A10.1). The integral quantity in (A10.6) can be readily evaluated

numerically.

The formulation of (A10.6) is based on the assumption that flow around a spine is everywhere
two-dimensional in planes normal to the spine. This may be incorrect in the immediate vicinity of the
test, where dw/dx is large (if W is large); and it also is incorrect at the very tip of the spine. The
formulation is reasonable for moderate-to-long spines where w(x) is approximately uniform (dw/dx = 0)
over much of their length. Indeed, long spines are of most concern here.

The maximum tensile stress ¢ within a spine occurs at the position of maximum torque 7, which

is at, or very close to, the base of the spine. The stress ¢ is given by

47
= % A10.7
y nr ( )

At failure, o must be infinitesimally larger than the tensile strength T, of the spine. Setting ¢ = T, in
(A10.7), combining (A10.6) and (A10.7), and specifying the settling speed W = W, at which breakage

occurs,

w(x; W,)(x - R)

s

_ lép R+ _
-/ dx =0 (A10.8)

m(””) - Inw(x; W,)
pr
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The speed W, (obtained from (A10.8) numerically) is realistic for the case of small n (r ~ 10 or less)
where interaction among spines is negligible. It is much more difficult, however, to evaluate W, for large
n, because we do not have information regarding the velocity field in the vicinity of individual spines.
Any approach therefore must be ad hoc.

As n increases, the region near the test of negligible differential motion between spines and fluid
expands, and the radial positionx = R, where the velocity is effectively zero increases. We thus define
R, by w(R;;W) = 0. The position R, = R in absence of spines, and R, can be no greater than R + L.
We assume for simplicity that the distance R, -~ R varies with 7 and A in a manner that is similar to the
relation between the drag on a spinose foraminifer, and #» and A. Dimensional analysis then suggests that

the ratio (R, - R)/I can be expressed as

-R
Bo "R 2 (- nyabpe (A10.9)
0 1
! Re

where o is a dimensionless coefficient. To ensure that the upper limit of this ratio is unity, it can be
normalized by dividing by 8 + («/VRe)Cy(n - n,)*A’P¢, where (8 is an arbitrary positive constant. Setting

B8 = 1, performing this division and rearranging,

Ry-R _ Cy(n - n)*APP*
T L e — (A10.10)
- o(n - n*A°P

This ratio has the following desirable properties:
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- R
R R 0 n-n, Re-w (A10.11)

-R
Rﬂl -1; n-», Re-0 (A10.12)

Solving (A10.10) for R,, the settling speed W, is evaluated as above, where R in (A10.1), and in the
limits of integration in (A10.8), is replaced by R,. The value of the coefficient « is estimated by
matching values of W, for small n obtained from (A10.8) using R and then using R,. This formulation
retrieves a minimum value of W,, because it does not fully account for hydrodynamic interaction among
spines extending beyond R,. Finally, it is noteworthy that the effects of spine interaction as embodied
in (A10.11) and (A10.12) are consistent with the analysis of Cheer and Koehl (1987) regarding the drag
on bristled appendages (in particular, see points (1), (3) and (5), p. 26-27, in Chear and Koehl).

Turning to the tensile strength T, Turner and others (1954) obtained three values for the elastic
limit of calcite crystals in a state of extension parallel to the crystallographic c-axis, under rapid strain
rates (0.025% sec™). These values are 9.3 107 dyn cm? and 2.0 X 10® dyn cm?, both obtained at 20 °C
and a confining pressue of 110 dyn cm?; and 4.4 X107 dyn cm® obtained at 300 °C and a confining
pressure of 5.1 10° dyn cr®.  The third value strongly reflects effects of high temperature. The first
two values represent an upper limit of the tensile strength under a state of elastic fracture. (The
experiments involved plastic deformation of the crystals.) The effects of confining pressure on the elastic
limit are unknown; although T, may be reduced by an order of magnitude at near-surface confining
pressures, this is unlikely.

In addition, it is well-known that the strengths of many materials, when measured per unit size,
increase with decreasing sample size of material. Explanations for this size-dependent behavior generally
are grounded in the early statistically-based theories of Pierce (1926), Daniels (1945), Epstein (1948),

Gumbel (1954) and others. These theories suggest that the essential reason for increasing strength with
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decreasing size is that, for a given underlying distribution of structural flaw sizes, the probability that a
material sample will contain large, weak flaws decreases as its size decreases. The potential implication
for foraminiferal spines is that the largest flaw size is limited by spine diameter; by virtue of their small
diameter, the tensile strength T, of spines may be lar;ger than that obtained for a "large" calcite crystal.
The extent to which this size-dependent behavior occurs for crystalline spines, however, is unknown.
For order-of-magnitude arguments, we therefore choose the T, = 1X10° dyn cm? based on the
experiments of Turner and others (1954), with the caveat that this value possibly is an underestimate of
the actual strength of spiﬁes.

11 Boundary Effects During Settling

For a sphere with radius R settling along the axis of an infinite cylindrical container with radius
R,, the total drag F, on the sphere, accounting for effects of the container, is given by (for example,

Happel and Brenner, 1986, p. 318)
F, = 6nuRWK, (Al11.1)

where the factor K, to four terms, is

-1

K, - (Al1.2)

3 5
1 - 210444 B + 2.08877| R - 004813 R| - ...
R R R

[ (3 4

It is then straightforward to demonstrate that experimentally determined values of the coefficient of drag

C, are given by

12
Cp = 2K, (A11.3)

which immediately indicates that, for geometrically similar sphere-container systems where R/R; is a
constant, boundary effects may systematically influence the value of the numerical factor in (A11.3), but

not the inverse relation between C, and Re. If similarity is not maintained, however, then the form of
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the relation between C, and Re may be affected, for example, as R is systematically varied, because R
is common to both Re and K;.

Analogous conclusions pertain to model foraminifera due to their quasi-spherical symmetry,
although the factor K, cannot be used directly to correct for boundary effects. Nonetheless, one may
envision that each model possesses a nominal radius, analogous to R in (A11.2), that is greater than the
test radius R, but less than the total radius R, + /.. Then, with the model and container dimensions used,
"actual” values of the drag coefficient for models ideally settling in an unbounded fluid would be as little
as six percent, to as much as 70 percent, less tham the observed values of C,, based on (Al11.3).
Moreover, the fit of data in Figure 2 suggests that the boundary "sees” a nominally spherical object, not
the details of the spine geometry, such that for models with similar overall dimensions, boundary effects
are systematic. The settling system—the model plus cylindrical container—is approximately geometrically
similar (or boundary effects are negligible) such that an inverse relation between C,, and Re is maintained
among replications in the two sets of experiments, a result that would not otherwise occur. More
generally, we suspect that boundary effects are likely to systematically ;ffect estimates of the exponents
in (8), but not the basic power form of (8). AThis is indirectly reflected in the very good fit of data in

Figure 5, including the data that were not used in developing (8).

NOTATION

a empirical exponent associated with spine number 7

b empirical exponent associated with dimensionless spine length A
c empirical exponent associated with dimensionless spine radius P
C constant associated with coefficient of drag Cp

G coefficient of drag
C,,  coefficient of drag for spine treated as right-circular rod

G empirical coefficient
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XN X

el

total drag on sphere settling in cylindrical container
drag force
drag force per unit length of spine

acceleration due to gravity

boundary correction factor for drag on sphere settling in cylindrical container

length of spine extending beyond protoplasm

length of spine

spine length associated with settling speed extremum
characteristic linear dimension

number of spines

spine number associated with extremum of S,

spine number associated with settling speed extremum

spine number associated with extremum of S

empirical coefficient

spine radius

radius of test and protoplasm combined; sphere radius

radius of settling container

radius of test

effective radius of zero velocity surrounding foraminifer
Reynolds number defined by pRW/pn

Reynolds number defined by orV/p

derivative of settling speed W with respect to protoplasm density p,
derivative of settling speed W with respect to fluid viscosity p

derivative of settling speed W with respect to fluid density p
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Ps

tensile strength of calcite for planes normal to crystallographic c-axis
characteristic velocity of flow around spine

fluid velocity component parallel to settling motion

settling speed

settling speed at which spines break

settling speed of spherical test without spines

maximum (or minimum) settling speed

coordinate axis normal to settling motion

coordinate axis parallel to settling motion

dimensionless coefficient

arbitrary positive constant

dimensionless spine length equal to I/R

dimensionless spine length associated with extremum of S,
dimensionless spine length associated with settling speed extremum
dimensionless spine length associated with extremum of ;
dynamic viscosity of liquid

liquid density

density of protoplasm

effective density of test and surrounding protoplasm without spines
density of spine

dimensionless spine radius equal to r/R

maximum tensile stress within spine

torque on spine

total porosity of test
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