STRESS FUNCTIONS
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-orientation within deformation zones between two mobile plates

The regional state of stress in a rock volume can best be
visualized as stress trajectories, and the most elegant tool to
formulate the spatial state of stress is in terms of Airy’s stress
function ¢. The use of Airy’s stress function has been
demonstrated in several analytical studies of particular
geological fault patterns (Anderson, 1951; Hafner, 1951; 0Odé,
1957; Sanford, 1959; Couples, 1977; Muller and Pollard, 1977;
Spencer and Chase, 1989). However, a method to characterize the
stress trajectory pattern in three orthogonal planes with a set of
three stress functions is first introduced here. This allows the
description of stress for the following three-dimensional cases

(figures in brackets refer to those in Weijermars, in review):

A. Reverse faulting and homogeneous shortening (figs. la, 2a, 2c)
B. Normal faulting and homogeneous extension (figs. 2b, 2d)

C. Shortening deformation zone by horizontal pure shear (figs.
5a,5c).

D. Horizontal pure shear with extension of deformation zone (figs.
10a, 10c)

E. Horizontal simple shear (figs. 5b, 5d, 10b, 10d)
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Cases A-E are discussed in turn below after a short description
of Airy’s stress function, ¢ , a potential field with units: Pa m’.
This function describes the deviatoric stresses arising from

surface forces in addition to body stresses in the following

fashion:
T, = 0%/ax? (1a)
T, = 0%/82? (1b)
T,, = -0%b/3xdz (1lc)

The definition of ¢ is so elegantly constructed that the
equilibrium equations are automatically satisfied in plane stress

problems, i.e.:

dt,,/9x + 9t,/9z = 0 (2a)
ot,,/dz + dt,,/dx

]
o

(2b)

An appropriate stress function ¢ also complies with the condition

of strain compatibility to warrant continuity of deformation:

lap lap ¢ = 0 (3)

The stress trajectory inclination P with respect to the X-axis is
determined by the stress function through the expression
(neglecting body forces, because their stress trajectories

comprise a pattern of orthogonal straight lines):

tan 2B = -(29%°%9/9xdz) / [(3%/9z%)~(3%/3x%)] (4)
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The stress fields described by the sets of stress functions
derived below are termed here uniform, although the stress field
in the vicinity of the fault surfaces may be modified after the
initial failure (Chinnery, 1964, 1966a,b). Nonetheless, it may be

assumed that components of the bulk stress tensor remain constant

-in space. The condition P=0 probably is only strictly valid in

nature for simple shear in the horizontal plane (case E).
Converging and diverging plates with oblique motion (cases é and
D), constrained here to deformation in the horizontal plane by
specially defined boundary conditions, are likely to involve
transpression and transtension, respectively. If this were the
case, the confinig pressure, P, will not be zero as followed here,
but involves overpresssure in transpression and underpressure in
transtension. These advanced cases of three-dimensional

deformation will be modelled elsewhere (work in preparation).

A. Reverse faulting and homogeneous shortenin Figs. la, 2a, 2c

The stress field of these cases involve 1) biaxial deviatoric
stress causing bulk pure shear in the XZ-plane, 2) uniaxial
compression in the XY-plane and 3) uniaxial tension in the YZ-
plane (Fig. la). Compression is in the X-direction and tension in
the Z-direction. The stress in each of the three planes may be
formulated by three complementary stress functions ¢(x,z), ¢(x,Y)
and ¢(y,z). If the total tectonic stress is g,, = ¢, then the three

stress functions are:




d(x,2) = (0,/4) (2% - x%) (5a)
d(x,y) = (0,/4) ¥ (5b)
d(y,2) = -(0,/4) Y (5¢)

Differentiation of equations (5a-c) according to (la-c) yields all

relevant components of the deviatoric stress tensor, i.e.:

T, = 6;/2 T, = -06,/2 T, =0 from (5a)
Ty = 06,/2 Ty = 0 Ty = 0 from (5b)
T, = =06,/2 T, =0 T, =0 from (5c)

Differentiation of equations (5a-c) according to expressions
(2a,b) and (3) reveals that both equilibrium and strain
compatibility conditions are fullfilled. Differentiation of
equation (4) shows that all stress trajectories are parallel to

the coordinate axes. It has been shown in section 3 that P= o0,/2.

B. Normal faulting and homogeneous extension {Figs. 2b, 2d)

These cases involve 1) biaxial deviatoric stress causing bulk
pure shear in the XZ-plane, 2) uniaxial tension in the XY-plane,
and 3) uniaxial compression in the YZ-plane (Fig. 1lb). Tension is
in the X-direction and compression in the Z-direction. The stress
in each of the three planes may, again, be formulated by three
complementary stress functions ¢(x,z), ¢(x,y) and ¢(y,z). If the
total tectonically applied stress is ¢, = -0; then the three stress

functions are:



d(x,z) = (0,/4) (¥* - 2% (6a)
d(x,y) = —(0,/4) ¥ (6b)
d(y,z) = (0,/4) ¥ (6¢c)

Differentiation of equations (6a-c) according to (la-c) yields all

-relevant components of the deviatoric stress tensor, i.e.:

Ty = =0,/2 T,, = 6,/2 T,, = 0 from (6a)
Ty = =0,/2 T, =0 Ty = 0 from (6b)
T, = 0,/2 Ty =0 T, = 0 from (6c)

Differentiation of equations (6a-c) according to expressions
(2a,b) and (3) reveals that both equilibrium and strain
compatibility conditions are fullfilled. Differentiation of
equation (4) shows that all stress trajectories are parallel to

the coordinate axes. It has been shown in section 3 that P= - ¢,/2.

C. Shortening deformation zone by horizontal pure shear (Figs. 5a,

5c)

This case involves 1) biaxial deviatoric stress causing pure
shear in the XZ-plane, 2) uniaxial tension in the XY-plane, and 3)
uniaxial compression in the YZ-plane (Fig. lc). Compression is in
the Z-direction and tension in the X-direction. If the total
tectonically appplied stress is o,, = o, then the stress functions

$(x,z), &(x,y), and ¢(y,z) in each of the three planes are:



d(x,z) = -(0,/2) (2% - %) (7a)
d(x,y) = -(0,/2) ¥ (7b)
d(y,2z) = +(0,/2) ¥ (7¢c)

Differentiation of equations (7a-c) according to (la-c) yields all

relevant components of the deviatoric stress tensor, i.e.:

from (7a)

Txx = =0 Tz T 0 Tz = 0
Ty = =0 Ty = 0 Ty = 0 from (7b)
T,, = 0 Ty =0 T, =0 from (7c)

Differentiation of equations (7a-c) according to expressions
(2a,b) and (3) reveals that both equilibrium and strain
compatibility conditions are fullfilled. If the major and minor
principal deviatoric stress axes are both in the horizontal XZ-
plane it follows from the condition of plane strain that all
vertical stresses are zero, i.e. bofh g, = 0 and 17, = 0.

yy Yy

Substitution in T, = 0, - P ylelds P = 0.

D. Horizontal pure shear with extension of deformation zone (Figs.

10a, 10c)

This case involves 1) biaxial deviatoric stress causing pure
shear in the XZ-plane, 2) uniaxial tension in the XY-plane, and 3)
uniaxial compression in the YZ-plane (Fig. 1d). Compression is in
the X-direction and tension in the Z-direction. If the total
tectonic stress is o¢,, = o; then the stress functions ¢(x,z),

$(x,y), and ¢(y,z) in each of the three planes are:



d(x,2z) = (06,/2) (2% - %% (8a)
d(x,y) = (0,/2) y? (8b)
®(y,2z) = -(0,/2) y? (8¢c)

Differentiation of equations (8a-c) according to (la-c) yields all

‘relevant components of the deviatoric stress tensor, i.e.:

Ty = Oy T,, = -0, 1,, =0 from (8a)
Txx = 01 Ty =0 Ty = 0 from (8b)
T, = =0, Ty =0 T, = 0 from (8c)

Differentiation of equations (8a-c) according to expressions
(2a,b) and (3) reveals that both equilibrium and strain
compatibility conditions are fullfilled. It follows from the
condition of plane strain that all vertical stresses are zero,
i.e. both O = 0 and t,, = 0. Substitution in 1, = ¢, - P yields P

¥y vy ¥y
= 0.

E. Horizontal simple shear (Figs. S5b, 5d, 10b, 10d)

This case includes Anderson’s (1951) condition for wrench
faulting. The stress field involves: 1) bulk simple shear in the
XZ-plane (Fig. le). If the total tectonic stress is o, then the
stress functions ¢(x,z), ¢(x,y), and ¢(y,z) in each of the three

planes are:

d(x,2z) = -0, Xy (%a)
d(x,y) (9b)
¢(y,z)

] Il
o o

(9¢)
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Differentiation of equations (9a-c) according to (la-c) yields all

relevant components of the deviatoric stress tensor, i.e.:

T, = 0 t, =0 T,, = O, from (9a)
T, = 0 Ty = 0 Ty = 0 from (9b)
T,, =0 Ty =0 Ty, = 0 from (9c)

Differentiation of equations (9a-c) according to expression§
(2a,b) and (3) reveals that both equilibrium and strain
compatibility conditions are fullfilled. Differentiation of
equation (4) shows that all stress trajectories are parallel to
the coordinate axes, except for o,-trajectories which are within
the XZ-plane at 45° to the X-axis. It follows from the condition
of plane strain that all vertical stresses are zero, i.e. both Oyy

= 0 and T, = 0. Substitution in t. = ¢

vy vy yw - P yields P = 0.
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FIGURE CAPTION

Fig. 1: Sketches showing deviatoric stress trajectories in three
orthogonal planes for the cases A-E discussed in the text. These

are a) reverse faulting and homogeneous shortening, b) normal

-faulting and homogeneous extension, c) horizontal pure shear with

shortening of deformation zone, d) horizontal pure shear with

extension of deformation zone, and e) horizontal simple shear.
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