| GSA Data Repository Item # 8527 | | |--|----------------------| | Title of article Florence-Niagara terrane: An early Prot | erozoic accretionary | | complex, Lake Superior region, U.S.A. | | | Author(s) D. K. Larue and W. L. Ueng | | | see <u>Bulletin</u> v. 96 , p. 1179 - 1187 | | | Contents 25 pages | | | Table and Figures | • ## REPOSITORY APPENDIX ## FIGURE CAPTIONS - 1. Structural data plotted on lower hemisphere on Schmidt net. Circles fold axes, bxcl intersections; dots poles to bedding; triangles elongation and alignment lineations; squares poles to axial planes of minor folds and cleavage. Hollow symbols represent first phase or dominant lineations; infilled symbols represent younger or sub-dominant lineations (see text). Lined circles in Packet 7 shows bedding/cross-bedding intersection lineation. - Plot of bed thickness ratio, relative to hinge thickness, against dip of bedding. A. Packet 1 folds (n = 12). B. Packet 2 folds (n = 29). - Apical angle plotted as a function of rake of fold axis in axial plane. Packet 8. - 4. Metamorphism of western Florence-Niagara terrane. Redrawn from Dutton (1970). | TABLE | 1. | Summary | οf | Fault | Packago | |-------|----|---------|----|-------|---------| | Pac-
ket | Definition of
Boundaries | Lithology | General
Structure | Orientation strain axes | Deformation
History | |-------------|--|--|---|--|---| | 1 | N contact: truncate
stratigraphy; S
contact: local trun-
cations of strati-
graphy, change in
structural style. | dolomite (Chocolay
Group); quartzite,
iron formation
(Menominee Group);
both shelf deposits. | S-facing homocline with some major folds; axial planes strike WNW, dip vertically, fold axes plunge shallowly. | XY plane strikes WNW, dips steeply. X either subhorizontal or subvertical. | SSW-shortening;
superposed
heterogenous
strains cause
two extension
directions? | | 2 | S contact: change in stratigraphy. | deep water (slope
basinal) mudstones
(now slates) and
sandstones: Baraga
Group. | mostly S-facing homo-
cline with some major
folds; axial planes
strikeWNW dip verti-
cally, fold axes
girdled in mean
axial plane. | XY plane strikes WNW dips steeply. X plunges steeply W. | SSW-shortening. Rotation of fold axes toward dir- ection of exten- sion (model of Sanderson, 1973) accompanying great strain. | | 3 | S contact: abrupt
change in sedimen-
tologic facies and
structure. | shallow water
quartzites of
Baraga Group. | SW-facing homocline. Fold axes and bedding cleavage lineations plunge down the WNW striking foliation. | XY plane strikes WNW,
dips steeply. X
plunges steeply W. | SSW-shortening;
origin of reclined
folds unclear; due
to non-coaxial
strain history? | | 4 | S contact: abrupt change in tectonostratigraphy. | deep water mud-
stones (now slates)
and sandstones:
Baraga Group. | SW-facing homocline(?, top indicators rare). Folds uncommon, foliation strikes NW, dips steeply south. Cut by right lateral strike-slip faults that have associated folds in fault walls. | XY plane strikes NW, dips steeply SW. X plunges downdip. Axes of strain during strike-slip faulting: XY, WNW, subvertical, X, subhorizontal. | SW shortening followed by strike-slip faulting. | | Pac-
ket | Definition of
Boundaries | Lithology | General
Structure | Orientation strain
Axes | Deformation
History | |-------------|--|---|--|--|--| | 5 | N contact:
truncation
stratigraphy; S
contact, change
in structural
style. | <pre>dolomite (Chocolay Group); quartzite and iron formation (Menominee Group): shelf deposits.</pre> | S-facing homocline with a few major folds. Axial planes and foliations strike WNW, dip steeply. Foldaxes plunge shallowly. | XY strike WNW, dips steeply. | SSW shortening. | | 6 | S contact: change in stratigraphy. | poorly exposed deep-
water facies (Baraga
Group). | poorly exposed; folia-
tion strikes WNW,
dips steeply. Some
fold axes reclined. | poorly constrained;
XY strikes WNW, dips
steeply. | poorly constrained SSW shortening. | | 7 | N contact: poorly
constrained; S
contact: abrupt
change in sedimen-
tary facies. | shallow water quartz-
ites (Baraga Group). | SW-facing homocline with local regional warps. Foliation strikes NW, fold axes plunge, down-dip. | XY strikes NW, X plunges steeply. | SSW shortening;
origin of steeply
plunging fold
axes due to non-
coaxial strain(?) | | 7A | Both contacts:
based on pinch-out
of unit. | shallow water quartz-
ites (Baraga Group). | poorly understood;
foliations strike
WNW and dip steeply;
bedding-cleavage
intersections are
girdled. | XY strikes WNW. | SSW shortening;
deformation is
poorly constrained;
rotation of bed-
ding cleavage
intersections
toward X with
progressive strain
(?). | | 3 | Both contacts:
truncation of
stratigraphy. | shelfal to basinal volcanics (Baraga Group), iron formation and slate (Paint River Group). | poorly understood;
major fold with SE
closing hinge? Two
phases of deformation:
first, axial planes
strike W, steep dips,
girdled fold axes;
second, N-S striking
axial planes, steep
dips. | first deformation:
XY strikes W, dips
steeply second
deformation: XY
strikes N, dips
steeply. | first deformation
S-shortening
accompanied by
great strain (?)
such that fold
axes girdled in
mean axial plane;
second deformation
folds formed by W-
shortening. | ## LEGEND - POLE TO BEDDING - F1 FOLD AXIS,BEDxCLEAVAGE INTERSECTION - STRIATIONS - ☐ POLE TO AXIAL PLANE AND CLEAVAGE OF F1 - POLE TO AXIAL PLANE AND CLEAVAGE OF F2 - **△ DOMINANT ELONGATION LINEATION** - **▲ SUBDOMINANT ELONGATION LINEATION** - **(1)** BED CROSS-BED INTERSECTION