Chenglin Gong, Ronald J. Steel, Kun Qi, and Yingmin Wang, 2020, Deep-water channel morphologies, architectures, and population densities in relation to stacking trajectories and climate states: GSA Bulletin, https://doi.org/10.1130/B35431.1.

Supplemental Material

Table S1. A tabulation of 50 turbidite channels (numbered red circles in Fig. 1) with lateral (*L*), random (*R*), and vertical (*V*) channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number).

Table S2. A summary of 49 contourite channels (numbered white circles in Fig. 1) with oblique upslope channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number).

Table S3. A tabulation of 43 deep-water channels (numbered yellow circles in Fig. 1) with unidirectional channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number).

Table S1. A tabulation of 50 turbidite channels (numbered red circles in Fig. 1) with lateral (*L*), random (*R*), and vertical (*V*) channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number). The listed channel examples are typically oriented parallel or subparallel to the direction of down-slope turbidity currents, and are generally interpreted to be created by down-slope turbidity currents (i.e., turbidite channels).

Codes	Locations	Examples or key references	Climate sta	ates	Morphologies			Architectures Channel tr		jectories
Codes	Locations	Examples of key references	Ages	Climates	<i>W</i> (m)	<i>T</i> (m)	W/T	M _s	T_{se} (°)	Trends
TC1	Yinggehai	Unpublished seismic data (Li and Gong, 2016)	Pliocene	Icehouse	814	59	12	1.89	2.2	L
TC2		Figure 9B of Saller et al. 2012	Late Quaternary	Icehouse	602	195	3	0.25	52.7	V
TC3	Offshore Indonesia	Figure 8A of Saller et al. 2004	Late Quaternary	Icehouse	768	200	4	0.52	26.5	V
TC4	Eastern Borneo Margin	Figure 2A of Posamentie and Kolla (2003)	Late Quaternary	Icehouse	1626	130	12	1.21	3.8	L
TC5		Figure 14 of Hubbard et al.	Late Oligocene	Icehouse	3937	196	20	0.76	3.7	L
TC6	Austrian Molasse basin	2009	to early Miocene	Icehouse	3804	196	19	1.12	2.6	L
TC7	basin		•	Icehouse	3814	159	24	0.79	3.0	L
TC8	Bengal Fan (Zhang	Unpublished seismic data	Pliocene	Icehouse	786	127	6	0.36	24.3	V

TC9	et al., 2017)	Unpublished seismic data		Icehouse	1450	299	5	0.47	23.6	V
TC10		Figure 7B	Pliocene	Icehouse	1849	280	7	0.64	13.3	V
TC11				Icehouse	954	225	4	0.45	27.9	V
TC12	Channel T1 in the	Figure 2A of Deptuck et al.	Late Quaternary	Icehouse	994	270	4	0.71	21.0	V
TC13	Indus Fan, Arabian Sea	2003	2	Icehouse	3589	177	20	0.69	4.1	R
TC14	bou			Icehouse	3698	97	38	0.96	1.6	L
TC15				Icehouse	1970	296	7	0.12	50.8	V
TC16	Channel T2 in the	Figure 3A of Deptuck et al.	Late Quaternary	Icehouse	1256	275	5	0.13	59.0	V
TC17	Indus Fan, Arabian Sea	2003		Icehouse	3516	187	19	0.60	5.1	R
TC18				Icehouse	3960	99	48	0.88	1.6	L
TC19				Icehouse	1314	141	9	0.29	20.1	V
TC20	Channel T3 in the	Figure 6D of Sylvester et al.		Icehouse	867	200	4	0.86	15.1	V
TC21	Indus Fan, Arabian	2011	Late Quaternary	Icehouse	1802	62	29	1.19	1.7	L
TC22	Sea			Icehouse	945	130	7	0.65	12.0	V
TC23				Icehouse	1923	152	13	1.11	4.1	L
TC24	Channel T3 in the	Figure 6D of Sylvester et al.		Icehouse	892	227	4	0.60	22.9	V
TC25	Figure 6D of Sylve	2011	Late Quaternary	Icehouse	2343	113	21	1.11	2.5	R
TC26	Sea			Icehouse	1560	64	24	1.06	2.2	L

						1	1			
TC27				Icehouse	3992	95	42	0.97	1.4	L
TC28				Icehouse	834	85	10	1.81	3.2	R
TC29				N/A	623	100	6	0.59	15.3	V
TC30	Offshore Angola	Figure 2 of Abreu et al. 2003	N/A	N/A	825	72	11	0.85	5.9	R
TC31				N/A	404	26	15	1.41	2.6	L
TC32		Figure 17 of Janocko et al.		Icehouse	2126	106	20	1.21	2.4	R
TC33	West Africa margin	(2013)	Quaternary	Icehouse	712	33	22	1.35	1.9	L
TC34				Icehouse	399	101	4	0.49	27.5	V
TC35	Zaire turbidite fan	Figure 8 of Labourdette and Bez (2009)	Late Oligocene	Icehouse	633	38	17	1.64	2.1	L
TC36	Benin channel,	Figure 8 of Labourdette and		Icehouse	435	85	5	0.22	42.0	V
TC37	western Niger Delta slope	Bez (2009)	Quaternary	Icehouse	732	108	7	0.19	37.2	V
TC38				Icehouse	667	108	6	0.11	56.8	V
TC39	Benin channel,	Figure 7A of Deptuck et al.	Quaternary	Icehouse	501	108	5	0.79	15.2	V
TC40	western Niger Delta slope	(2007)	2	Icehouse	2121	88	24	1.32	1.8	R
TC41	siope			Icehouse	1785	42	42	0.95	1.4	L
TC42	Benin-major		Quaternary	Icehouse	641	291	2	0.31	55.8	V
TC43	channel, western	Figure 5A of Deptuck et al.	(Icehouse	1688	126	13	1.56	2.7	R

TC44	Niger Delta slope	(2012)		Icehouse	3515	165	21	1.73	1.6	L
TC45	West Nile Delta	Figure 4A of Cross et al. (2009)	Pliocene	Icehouse	3384	149	23	1.37	1.8	R
TC46	Joshua channels,	Figure 4	Late Quaternary	Icehouse	1342	121	11	1.50	3.4	L
TC47	Gulf of Mexico		(Icehouse	862	294	3	0.47	36.1	V
TC48		Figure 10 of Stevenson et al.	Late Quaternary	Icehouse	555	113	5	0.76	14.9	V
TC49	Offshore Colombia	(2015)	Late Quaternary	Icehouse	1071	125	9	0.23	26.9	V
TC50	Amazon fan	Figure 16 of Pirmez and Flood (2003)	Late Quaternary	Icehouse	1666	290	6	0.45	21.3	V

Table S2. A summary of 49 contourite channels (numbered white circles in Fig. 1) with oblique upslope channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number). The tabulated channel examples are typically oriented subparallel to the direction of along-slope contour currents, and are commonly considered to be created by along-slope contour currents (i.e., contourite channels).

Codes	Locations	Examples or key references	Climate	states	Mo	orphologie	es	Architectures	Channel	trajectories
Coues	Locations	Examples of key references	Ages	Climates	<i>W</i> (m)	<i>T</i> (m)	W/T	M _s	T_{se} (°)	Trends
C1				Icehouse	3447	59	17	0.83	-88.8	Upslope
C2				Icehouse	2562	45	23	0.69	-88.5	Upslope
C3				Icehouse	2402	42	14	0.43	-87.6	Upslope
C4				Icehouse	2404	48	20	0.66	-88.3	Upslope
C5	Sakhalin Basin	Figure 8A of Henriksen et al.	Miocene to	Icehouse	2282	38	18	0.50	-88.1	Upslope
C6	Russia	-2008	recent	Icehouse	2383	36	17	0.61	-88.6	Upslope
C7				Icehouse	1598	47	21	0.32	-84.7	Upslope
C8				Icehouse	1355	37	12	0.71	-87.8	Upslope
C9				Icehouse	2171	51	9	0.80	-88.3	Upslope
C10				Icehouse	3382	69	36	0.87	-88.7	Upslope
C11	North Okhotsk margin	Figure 8A of Wong et al. 2003	Quaternary	Icehouse	2139	60	27	1.20	-88.7	Upslope
C12				Icehouse	3050	119	30	0.08	-62.9	Upslope
C13	Qiongdongnan slope	Wild and Posamentier (2012)	Middle	Icehouse	2664	119	31	0.08	-60.8	Upslope
C14	Qiongdongnan slope	which and I osamentier (2012)	Miocene	Icehouse	1831	76	22	0.06	-57.4	Upslope
C15				Icehouse	3016	127	26	0.04	-44.9	Upslope
C16	Southern Qiongdongnan	Figure 6A of Gong et al. (2017)	Recent	Icehouse	4778	178	20	0.29	-82.7	Upslope

C17				Icehouse	4640	74	23	0.16	-84.4	Upslope
C18	Faeroe-Shetland margin	Figure 8A	Late Neogene	Icehouse	4567	70	29	0.62	-88.6	Upslope
C19	margin			Icehouse	1565	25	19	0.36	-87.4	Upslope
C20	Faeroe-Shetland margin	Figure 8A	Late Neogene	Icehouse	3870	59	22	0.24	-86.3	Upslope
C21	West Shetland			Icehouse	865	51	27	0.11	-62.4	Upslope
C22	West Shetland		Plio-Pleistoce	Icehouse	993	38	43	0.16	-76.5	Upslope
C23	West Shetland	Figure 13 of Knutz, 2008	ne	Icehouse	1340	33	13	0.17	-81.7	Upslope
C24	West Shetland		ne	Icehouse	827	42	16	0.16	-72.8	Upslope
C25	West Shetland			Icehouse	2010	75	15	0.07	-63.4	Upslope
C26	Northern Tyrrhenian	Figure 8 of Miramontes -2016	Quaternary	Icehouse	442	31	20	0.15	-65.9	Upslope
C27				Icehouse	3516	127	13	0.16	-77.6	Upslope
C28	Algarve Cabral	Figure 10 of Hernández-Molina	Early	Icehouse	2772	78	12	0.64	-87.5	Upslope
C29	contourite channel	-2016	Pliocene	Icehouse	2904	46	13	0.68	-88.7	Upslope
C30				Icehouse	3413	55	10	0.13	-82.8	Upslope
C31				Icehouse	895	28	10	0.09	-71.8	Upslope
C32				Icehouse	993	25	10	0.04	-57.0	Upslope
C33				Icehouse	1697	41	11	0.05	-62.3	Upslope
C34	North Sea Basin	Figure 2A of Knutz -2008	Pliocene	Icehouse	1650	40	45	0.02	-42.4	Upslope
C35				Icehouse	1380	25	14	0.02	-45.3	Upslope
C36				Icehouse	1389	21	13	0.02	-55.3	Upslope
C37				Icehouse	1986	42	24	0.02	-40.2	Upslope
C38	German North Sea		Late	Greenhouse	1457	70	25	0.05	-46.7	Upslope
C39	German North Sea	German North Sea Figure 7 of Surlyk et al2008	Cretaceous	Greenhouse	2343	98	26	0.05	-48.9	Upslope
C40	German North Sea			Greenhouse	4186	105	27	0.07	-70.8	Upslope
C41	Southern Scotia Sea	Figure 7 of Pérez et al2014	Quaternary	Icehouse	2601	46	32	0.03	-62.1	Upslope
C42	Southern Scotia Sea			Icehouse	681	37	26	0.24	-77.4	Upslope

C43	Santos Basin	Figure 9B	Early	Icehouse	430	23	8	0.14	-69.1	Upslope
C44	Santos Basin	rigure 9D	Miocene	Icehouse	814	34	17	0.26	-80.9	Upslope
C45	Offshore Canterbury Basin	Figure 8B	Late Miocene to Pliocene	Icehouse	1279	56	23	0.55	-85.4	Upslope
C46				Icehouse	1081	29	14	0.17	-81.3	Upslope
C47	Offshore Canterbury	Figure 8B	Late Miocene	Icehouse	1998	138	20	0.06	-72.6	Upslope
C48	Basin	Figure ob	to Pliocene	Icehouse	1230	62	18	0.04	-89.8	Upslope
C49				Icehouse	1993	75	17	0.03	-89.8	Upslope

Table S3. A tabulation of 43 deep-water channels (numbered yellow circles in Fig. 1) with unidirectional channel-complex trajectories (measured as T_{se} = angles of channel pathways) and their relation to channel morphometric properties (reported as W = channel widths, T = channel thicknesses, and aspect ratios = W/T) and architectures (represented by M_s = mobility number). The listed channel examples are typically oriented parallel or subparallel to the direction of down-slope turbidity currents, but consistently migrate in an along-slope direction, and are generally interpreted to be created by the interplay of turbidity and contour currents (i.e., unidirectionally migrating deep-water channels).

Codes	Locations	Examples or key references	Climate s	Climate states		Channel morphologies			Channe	l trajectories
Codes	Locations	Examples of key references	Ages	Climates	<i>W</i> (m)	<i>T</i> (m)	W/T	M _s	T_{se} (°)	Trends
UC1		U1 on Figure 9B		Icehouse	3151	186	59	0.23	14.2	Alongslope
UC2		U2 on Figure 9B	Miocene to	Icehouse	4217	183	57	0.23	10.8	Alongslope
UC3	Pearl River mouth	U3 on Figure 9B		Icehouse	3580	251	57	0.35	11.3	Alongslope
UC4		U4 on Figure 9B		Icehouse	4528	226	50	0.27	10.6	Alongslope
UC5		U5 on Figure 9B		Icehouse	4571	248	60	0.31	9.9	Alongslope
UC6		U6 on Figure 9B		Icehouse	2769	165	66	0.28	11.8	Alongslope
UC7		U7 on Figure 9B		Icehouse	4382	214	34	0.32	8.8	Alongslope
UC8	Western Pearl River slope	U1 on Figure 11A	Pliocene	Icehouse	2723	228	37	0.62	7.7	Alongslope
UC9	Western Pearl River slope	U2 on Figure 11A	0 0 0 0 0	Icehouse	1479	165	42	0.34	18.0	Alongslope

UC10	Eastern	U1 on Figure 11B		Icehouse	1649	46	49	0.24	6.6	Alongslope
UC11	Qiongdongnan	U2 on Figure 11B	Late Miocene	Icehouse	1528	57	36	0.37	5.7	Alongslope
UC12	margin	U3 on Figure 11B	-	Icehouse	1481	50	26	0.33	5.8	Alongslope
UC13		U4 on Figure 11B		Icehouse	2013	65	22	0.36	5.1	Alongslope
UC14		U5 on Figure 11B		Icehouse	1180	53	24	0.37	6.9	Alongslope
UC15	Eastern	U6 on Figure 11B	Late Miocene	Icehouse	1247	48	24	0.39	5.7	Alongslope
UC16	Qiongdongnan margin	U7 on Figure 11B	-	Icehouse	1394	69	27	0.46	6.1	Alongslope
UC17	-	U8 on Figure 11B		Icehouse	1769	77	62	0.49	5.1	Alongslope
UC18		U9 on Figure 11B		Icehouse	1776	61	65	0.31	6.3	Alongslope
UC19			Middle to late	Icehouse	556	29	61	0.06	39.8	Alongslope
UC20	North Carnarvon	Figure 12B of Cathro et al.		Icehouse	536	24	66	0.23	11.2	Alongslope
UC21	Basin	(2003)	Miocene	Icehouse	951	35	17	0.23	9.2	Alongslope
UC22				Icehouse	1022	24	26	0.13	10.0	Alongslope
UC23				Greenhouse	710	54	40	0.10	37.0	Alongslope
UC24				Greenhouse	586	58	20	0.15	32.7	Alongslope
UC25	North Mozambique	Figure 2 of Palermo et al. (2014)	Early Eocene	Greenhouse	434	46	27	0.20	27.2	Alongslope
UC26		(2017)		Greenhouse	541	55	14	0.12	40.7	Alongslope
UC27				Greenhouse	454	43	28	0.10	44.4	Alongslope

UC28				Greenhouse	3351	142	36	0.22	11.0	Alongslope
UC29	Offshore Gabon	Figure 12A of Lonergan et al.	Late Quaternary	Icehouse	2624	105	63	0.17	13.4	Alongslope
UC30	Olishore Gabon	(2013)		Icehouse	3572	139	62	0.12	18.2	Alongslope
UC31	Offshore Gabon			Icehouse	2465	90	33	0.14	14.8	Alongslope
UC32	Offshore Gabon	Figure 12A of Lonergan et al. (2013)	Late Quaternary	Icehouse	3066	97	40	0.34	5.4	Alongslope
UC33	Offshore Gabon	(2013)		Icehouse	2495	97	41	0.36	6.2	Alongslope
UC34	Lower Congo Basin			Greenhouse	1998	245	42	0.39	17.4	Alongslope
UC35	Lower Congo Basin	Figure 10B	Oligocene	Greenhouse	1289	97	55	0.59	7.3	Alongslope
UC36	Lower Congo Basin			Greenhouse	1525	98	67	0.69	5.3	Alongslope
UC37				Icehouse	614	41	47	0.60	6.4	Alongslope
UC38	Ehus mansin	Figure 4B of Kertznus and	Pleistocene	Icehouse	712	36	8	0.54	5.3	Alongslope
UC39	Ebro margin	Kneller (2009)		Icehouse	793	60	20	0.79	5.5	Alongslope
UC40				Icehouse	1446	121	32	0.41	11.7	Alongslope
UC41	South Greenland	Figure 12A	Miocene to	Icehouse	3040	106	21	0.11	16.9	Alongslope
UC42	margin	Figure 12B	recent	Icehouse	1790	129	24	0.33	12.3	Alongslope
UC43	South Brazilian margin	Figure 12C	Quaternary	Icehouse	1401	110	40	0.14	29.5	Alongslope

References

- Abreu, V., Sullivan, M., Pirmez, C., Mohrig, C., 2003. Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Marine and Petroleum Geology 20, 631–648.
- Cathro, D.L., Austin Jr., J.A., Moss, G.D., 2003. Progradation along a deeply submerged Oligocene–Miocene heterozoan carbonate shelf: How sensitive are clinoforms to sea level variations? AAPG Bulletin 87, 1547– 1574.
- Cross, N.E., Cunningham, A., Cook, R.J., Taha, A., Esmaie, E., Swidan, N.E., 2009. Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field, offshore west Nile Delta, Egypt. AAPG Bulletin 93 (8), 1063–1086.
- Davies, R., Cartwright, J., Pike, J., Line, C., 2001. Early Oligocene initiation of North Atlantic Deep Water formation. Nature 410, 917–920.
- Deptuck, M.E., Steffens, G.S., Barton, M., Pirmez, C., 2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology 20, 649–676.
- Deptuck, M.E., Sylvester, Z., Pirmez, C., O'Byrne, C., 2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology 23, 406–433.
- Deptuck, M.E., Kendell, K., Brown, D.E., Smith, B.M., 2012. Seismic stratigraphic framework and structural evolution of the eastern Scotian Slope: geological context for the NS14-1 Call for Bids area, offshore Nova Scotia. CNSOPB Geoscience Open File Report, 2014-001MF 1–58 pp.
- Gong, C., Peakall J., Wang, Y., Wells, M.G., Xu, J., 2017. Flow processes and sedimentation in contourite channels on the northwestern South China Sea margin: A joint 3D seismic and oceanographic perspective. Marine Geology 393, 176–193.
- Henriksen, S., Pontén, A., Janbu, N., Paasch, B., 2011. The importance of sediment supply and sequence-stacking pattern in creating hyperpycnal flows. In: Slatt, R.M., Zavala, C. (Eds.), Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System. AAPG Studies in Geology 61, pp. 129–152.
- Hernández-Molina, F.J., Sierro, F.J., Llave, E., Roque, C., Stow, D.A.V., Williams, T., Lofi, J., Van der Schee, M., Arnáiz, A., Ledesma, S., Rosales, C., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., Brackenridge, R.E., 2016. Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Marine Geology 377, 7–39.
- Hubbard, S.M., de Ruig, M.J., Graham, S.A., 2009. Confined channel-levee complex development in an elongate depo-center: Deep-water Tertiary strata of the Austrian Molasse basin. Marine and Petroleum Geology 26, 85–112.
- Janocko, M., Nemec, W., Henriksen, S. and Warchoł, M., 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology 41, 7–34.
- Kertznus, V. and Kneller, B., 2009. Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research 21, 738–758.
- Knutz, P.C., 2008. Paleoceanographic significance of contourite drifts. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Developments in Sedimentology, 60. Elsevier, Amsterdam, pp. 511–535.
- Knutz, P.C., 2010. 3D seismic imaging of aggradational channels related to geostrophic currents through the Pliocene North Sea basin. Geo-Temas 11, 89–90.
- Labourdette, R., Bez, M., 2009. Element migration in turbidite systems: Random or systematic depositional processes? AAPG Bulletin 94, 345–368.
- Li, S., Gong, C., 2016. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water

channels: A 3D seismic case study from the northwestern South China Sea margin. Journal of Asian Earth Sciences 124, 233-246

- Lonergan, L., Huda Jamin, N., Jackson, C.A.-L., Johnson, H.D., 2013. U-shaped slope gully systems and sediment waves on the passive margin of Gabon (West Africa). Marine Geology 337, 80–97.
- Lu, H., Fulthorpe, C.S., Mann, P., 2003. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand. Marine Geology 193, 19–47.
- Miramontes, E., Cattaneo, A., Jouet, G., Théreau, E., Thomas, Y., Rovere, M., Cauquil, E., Trincardi, F., 2016. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): Drift morphology and Plio-Quaternary stratigraphic evolution. Marine Geology 378, 20–42.
- Pérez, L.F., Maldonado, A., Bohoyo, F., Hernández-Molina, F.J., Vázquez, J.T., Lobo, F.J., Martos, Y., 2014. Depositional processes and growth patterns of isolated oceanic basins: the Protector and Pirie basins of the Southern Scotia Sea (Antarctica). Marine Geology 357, 161–181.
- Palermo, D., Galbiati, M., Famiglietti, M., Marchesini, M., Mezzapesa, D., Fonnesu, F., 2014. Insights into a New Super-Giant Gas Field - Sedimentology and Reservoir Modeling of the Coral Complex, Offshore Northern Mozambique. OTC-24907-MS
- Pirmez, C., Flood, R.D., 1995. Morphology and structure of Amazon channel. In: Flood, R.D., Piper, D.J.W., Klaus, A. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, 155, pp. 23–45.
- Posamentier, H.W., Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research 73, 367–388.
- Posamentier, H.W., 2003. Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Marine and Petroleum Geology 20, 677–690.
- Saller, A., Dharmasamadhi. I.N.W., 2012. Controls on the development of valleys, canyons, and unconfined channel-levee complexes on the Pleistocene Slope of East Kalimantan, Indonesia. Marine and Petroleum Geology 29, 15–34.
- Saller, A.H., Noah, J.T., Ruzuar, A.P., Schneider, R., 2004. Linked lowstand delta to basin-floor fan deposition, offshore Indonesia: An analog for deep-water reservoir systems. AAPG Bulletin, 88, 21–46.
- Séranne, M. and Abeigne, C.-R.N., 1999. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (West Africa): consequences for sedimentation and southeast Atlantic upwelling. Sedimentary Geology, v. 128, 179–199.
- Surlyk, F., Jensen, S.K., Engkilde, M., 2008. Deep channels in the Cenomanian-Danian Chalk Group of the German North Sea sector: Evidence of strong constructional and erosional bottom currents and effect on reservoir quality distribution. AAPG Bulletin, v. 92, p. 1565–1586.
- Stevenson, C.J., Jackson, C.A.-L., Hodgson, D.M., Hubbard, S.M., 2015. Deep-water sediment bypass. Journal of Sedimentary Research 85, 1058–1081.
- Sylvester, Z., Pirmez, C., Cantelli, A., 2011. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture: Marine and Petroleum Geology 28, p. 716-717.
- Wild, R., Posamentier, H.W., 2012. Seismic stratigraphy and geomorphology of a syn- to post-rift depositional succession, Qiongdongnan Basin, South China Sea. Search and Discovery Article #10421.
- Wong, H.K., Lűudmann, T., Baranov, B.V., Karp, B.Ya., Konerding, P., Ion, G., 2003. Bottom current-controlled sedimentation and mass wasting in the northwestern Sea of Okhotsk. Marine Geology 201, 287–305.
- Zhan, L., Guo, B., Yu, Y., 2019. Architectural elements and stratigraphy of a deepwater fan: a case study of the Bengal Fan, Rakhine Basin, offshore Myanmar. Arabian Journal of Geosciences, 12:212