SUPPLEMENT FILE 6

Based on along-strike variations in geometry, kinematics and the presence of slip
partitioning, the surface rupture in the Sierra domain was divided into six segments and
these subdivided into 49 sections, which have an average length of ~1.0 km (Table SF6-1
and Figs. SF6-1 to SF6-3). Note that these short sections are defined as a basis for
organizing the fault measurement data, and do not correspond to rupture segments as
commonly used for seismic hazard estimation.

In Table SF6-1, we report the orientation and kinematics of each fault section
determined from the main datasets presented in this study. For fault section orientations,
section strike was determined from the trend of the line connecting the rupture section
endpoints, and dip was calculated using Bingham statistics for the rupture sections with
multiple measurements of master fault orientation. In general, scarp-forming fractures are
oriented at higher dip angles than the master fault along which they propagated. Thus in
sections that had no direct measurements of master fault orientation, we report the dip of
the shallowest-dipping, scarp-forming fault determined using three-point solutions. Dips
determined from these two methods are plotted for each section in Figures SF6-1 to SF6-
3. For sections that had neither master fault nor scarp orientation data, we report the dip
determined using one of the following conventions: 1) interpolated from the closest
measurements found in adjacent fault sections, 2) extrapolated dip from the nearest
rupture section, or 3) assumed rupture section dip based on structural context and known
along-strike characteristics of the fault zone. The method for determining rupture section
dip is marked in the “Dip Source” field in Table SF6-1. The average vertical and lateral

slip components of each section was calculated by dividing the area of the smoothed slip



envelope by the section length. Heave was calculated using the rupture section dip and
the net vertical displacement averaged over each section. Total slip is the vector sum of
heave, lateral and vertical components of slip. Finally, fault section kinematics were
derived using fault section orientations and the lateral and heave components of slip.
Laguna Salada Segment

Within the Laguna Salada segment, we defined six sections based on changes in
kinematics and geometry (Fig. SF6-1). Sections 1 and 2 form the southern tine of the
prominent splay observed near the edge of the Delta domain with minor northeast-down
vertical displacements (Fig. SF6-1). The northern tine is divided in three different splays
(sections 3-5) based on left-stepping discontinuities in the surface trace of the rupture,
each of which also accommodated minor northeast-down vertical displacements. Section
6 is marked by a change in polarity of vertical slip to the southwest and extends to the
intersection with the Pescadores fault. Dips reported in Table SF6-1 for sections 1 and 2
were determined using three-point solutions of scarp-forming faults. For sections 3-6,
rupture section dip reported is based on the assumption that the Laguna Salada fault has a
subvertical inclination within this segment.
Pescadores Segment

The Pescadores rupture segment shows very little along-strike variations in both
orientation and kinematics, however, we identified six sections based on subtle changes
in strike as well as changes in distribution of antithetic southwest-side down vertical slip
(Fig. SF6-1). All rupture sections within the Pescadores segment dip >65° towards the
northeast. For most fault sections, with the exception of section 11, dips reported in Table

SF6-1 were determined from measurements of scarp-forming faults and/or master faults.



For section 11, we report the dip interpolated from the nearest measurements found in
sections 10 and 12.
Puerta Accommodation Zone

EMC rupture through the Puerta accommodation zone was broadly distributed
along multiple faults, including several unnamed faults and the Cascabel and Borrego
faults (Fig. SF6-2). Due to the paucity of kinematic measurements in the field and the
complex distribution of surface rupture between the Pescadores rupture segment and the
Cascabel fault, we only recognize one section (section 13; Fig. SF6-2). This section is
located ~6 km from the northern limit of the Pescadores rupture segment, dips ~72° and
contains a single kinematic transect measurement (Fig. SF6-2). Along the northern
portion of the accommodation zone coseismic slip is distributed between the closely
spaced and subparallel Cascabel and Borrego faults, an additional four fault sections were
identified based on along-strike changes in fault orientation (sections 14 to 17; Fig. SF6-
2). A single section was defined along the Cascabel fault due to its relatively straight
surface trace and uniformly steep inclination, whereas, along the adjacent Borrego fault,
three fault sections were recognized based on >15° changes in strike along its length.
Borrego Segment

The Borrego rupture segment is divided into three kinematic sections (sections
18-20) defined by changes in strike (Fig. SF6-2 and Table SF6-1). These sections show
systematic differences in the ratio of lateral to vertical slip measured across the scarp
array. Dextral slip is maximized on section 19, which has the most westerly strike, and is
minimized on section 20, which has a NNE strike and accommodates a strong sinistral

component of slip (Fig. SF6-2 and Table SF6-1). Dips reported in Table SF6-1 were



determined using the shallowest dipping scarp-forming faults within each section, which
commonly had moderate inclinations. Due to the moderate inclinations of these fault
sections, the heave component derived for these section are an order of magnitude greater
than those derived for all fault sections to the south.
Paso Inferior Accommodation Zone

The Paso Inferior accommodation zone contains the northernmost Borrego fault,
an east-dipping detachment and two west-dipping faults, from which we identified 13
sections mostly based on changes in strike as well as discontinuities in the rupture trace
defined by stepovers (Fig. SF6-3). The northernmost west-dipping fault was defined as a
single section (section 38) due to its relatively short length.
Paso Superior Segment

The Paso Superior rupture segment is divided into 11 kinematic sections defined
by changes in either fault strike (sections 39-45), a left-stepping transfer zone (section
46) or at large changes in dip due to the ramp-flat transitions of the Paso Superior
detachment (sections 47-49). For sections that dip <45° and that accommodated
significant amounts of vertical displacement, the heave component of the total coseismic
slip vector is generally much greater than the vertical and lateral slip components (Table
SF6-1). Section 48 represents the northernmost fault ramp where the Paso Superior
detachment dips ~55°, and is where the largest amount of dextral coseismic slip was

measured in the Paso Superior segment.



TABLES

Table SF6-1. Table containing geometry and EMC rupture kinematics determined for the
49 fault sections identified in the Sierra domain of the EMC rupture. Longitude and

latitude mark midpoint locations to fault sections.

FIGURE CAPTIONS

Figure SF6-1. Geologic map of the southern Sierra Cucapah showing schematic rupture
traces (yellow lines), and the fault section boundaries and labels, geometry (ball and bar
symbols) and EMC rupture kinematics (shaded envelopes). Fault section dip values are
only shown for sections containing measurements of master fault plane and/or scarp-

forming faults. See Figure 11 for additional information.

Figure SF6-2. Geologic map of the central Sierra Cucapah showing schematic rupture
traces (yellow lines), and the fault section boundaries and labels, geometry (ball and bar
symbols) and EMC rupture kinematics (shaded envelopes). Fault section dip values are
only shown for sections containing measurements of master fault plane and/or scarp-

forming faults. See Figure 14 for additional information.

Figure SF6-3. Geologic map of the northern Sierra Cucapah showing schematic rupture
traces (yellow lines), and the fault section boundaries and labels, geometry (ball and bar
symbols) and EMC rupture kinematics (shaded envelopes). Fault section dip values are
only shown for sections containing measurements of master fault plane and/or scarp-

forming faults. See Figure 18 for additional information.
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