
Benowitz et al. Supplemental Text File 

Summary of the 40Ar/39Ar Analysis 1 

 For 40Ar/39Ar analysis, samples were submitted to the Geochronology laboratory 2 

at UAF where they were crushed, sieved, washed and hand-picked for mineral phases.  3 

The monitor mineral MMhb-1 (Samson and Alexander, 1987) with an age of 513.9 Ma 4 

(Lanphere and Dalrymple, 2000) was used to monitor neutron flux (and calculate the 5 

irradiation parameter, J).  The samples and standards were wrapped in aluminum foil and 6 

loaded into aluminum cans of 2.5 cm diameter and 6 cm height. The samples were 7 

irradiated in position 5c of the uranium enriched research reactor of McMaster University 8 

in Hamilton, Ontario, Canada for 30 megawatt-hours. Upon their return from the reactor, 9 

the samples and monitors were loaded into 2 mm diameter holes in a copper tray that was 10 

then loaded in a ultra-high vacuum extraction line.  The monitors were fused, and 11 

samples heated, using a 6-watt argon-ion laser following the technique described in York 12 

et al. (1981), Layer et al. (1987) and Layer (2000).  Bulk furnace-run samples were 13 

loaded in aluminum packets and step-heated in a Modifications Ltd. low-blank furnace 14 

connected on-line to the mass spectrometer. Temperature is calibrated by means of a 15 

thermocouple and a maximum temperature in excess of 1,600°C is achievable. 16 

Duplicated isothermal step-heating schedules were conducted on K-feldspar in order to 17 

retrieve diffusion characteristics, to apply diffusion models, and to calculate model 18 

thermal histories (Harrison et al., 1994; e.g. Lovera et al., 1993). Argon purification was 19 

achieved using a liquid nitrogen cold trap and a SAES Zr-Al getter at 400C.  The samples 20 

were analyzed in a VG-3600 mass spectrometer at the Geophysical Institute, University 21 

of Alaska Fairbanks. The argon isotopes measured were corrected for system blank and 22 

mass discrimination, as well as calcium, potassium and chlorine interference reactions 23 
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following procedures outlined in McDougall and Harrision (1999). System blanks 24 

generally were 2x10-16 mol 40Ar and 2x10-18 mol 36Ar which are 10 to 50 times smaller 25 

than fraction volumes. Mass discrimination was monitored by running both calibrated air 26 

shots and a zero-age glass sample.  These measurements were made on a weekly to 27 

monthly basis to check for changes in mass discrimination. A summary of all the 28 

40Ar/39Ar results is given in repository Table A1, A2, and A5 with all ages quoted to the 29 

+/- 1 sigma level and calculated using the constants of Steiger and Jaeger (1977).   The 30 

integrated age is the age given by the total gas measured and is equivalent to a potassium-31 

argon (K-Ar) age. The spectrum provides a true plateau age if three or more consecutive 32 

gas fractions represent at least 50% of the total gas release and are within two standard 33 

deviations of each other (Mean Square Weighted Deviation less than ~2.7).  Isochron 34 

ages are obtained on an inverse isochron diagram of 36Ar/40Ar versus 39Ar/40Ar (Roddick, 35 

1978; Roddick et al., 1980), which often allows homogeneous excess components to be 36 

identified. Errors on age and intercept age include individual errors on each point and 37 

linear regression by York’s (1969) method. The goodness of fit relative to individual 38 

errors is measured by mean square weighted deviation (MSWD). 39 

 40 

Minimum K-Spar Ages 41 

K-spar data is shown in table A1. For most K-feldspars, plateau ages cannot be defined, 42 

but since we wish to compare and discuss a series of steps with similar ages we use 43 

minimum age isochron populations. This is similar to the minima potassium feldspar age 44 

used in bulk analysis by Copeland and Harrison (1990) using minimum age spectra steps. 45 

A similar isochron approach was also used to examine deformation along the Karakorum 46 
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Fault (Valli et al., 2007). We use the more robust isochron minimum population age, but 47 

show the pseudo simple-mean minimum age plateau for comparison.  In summary the 48 

youngest isochron age grouping derived from either single grain K-spar laser runs (3) or 49 

bulk furnace runs (10) were considered to be the age of closure for the smallest domain 50 

(e.g. McDougall and Harrison, 1999; Valli et al., 2007). 51 

 52 

MDD Models 53 

 MDD data is shown in figures A38 to A43. MDD thermochronology has proven a 54 

useful tool to examine orogenic development because of the wide closure temperature 55 

window (~350 °C to ~150 °C) of the system (McDougall and Harrison, 1999). K-spar 56 

MDD thermochronology is also useful due to the deep depth for closure (~5 km) of the 57 

system minimizing the affect of topography influencing the temperature field of the upper 58 

crust (Ehlers, 2005). MDD thermal models were created using software developed by 59 

Lovera et al. (1993). Low temperature steps were adjusted to account for the likely 60 

presence of fluid-inclusion hosted excess Ar leading to older apparent ages. In many 61 

cases, the first step of an isothermal duplicate yielded a significantly older age than the 62 

second step, consistent with the presence of fluid-inclusion hosted excess Ar (Harrison et 63 

al., 1994).  Although this pattern is consistent with the presence of fluid-inclusion hosted 64 

excess Ar, corrections using the equations from Harrison et al. (1994) did not yield usable 65 

results as was the case for Sanders et al., (2006). We used the isothermal correction 66 

technique outlined in Sanders et al., (2006) whereas they took the average age of the step 67 

before and the step after an apparent old age as an estimate of the excess Ar correction.  68 

 69 
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See, GSA Data Repository item 2006190 (Sanders et al., 2006) for a detailed and 70 

extensive discussion on MDD modeling. 71 

 72 

 73 

Fission-track analyses:  Apatite fission-track (AFT) data are shown in Table A3.  All 74 

the fission-track ages measured with external detector method in Armstrong’s fission 75 

track lab at Cal State Fullerton.  Apatite grains were mounted in epoxy and 76 

ground/polished to reveal internal parts of the grains. Apatite grain mounts were etched in 77 

5 M HNO3 for 20 s at 21 oC.  Grain mounts were affixed with low-uranium muscovite 78 

micas and irradiated at the TRIGA reactor facility at Oregon State University.  After 79 

irradiation, track densities were measured at 1250x and track length and Dpar measured 80 

at 2000x.  See Table 2 for additional measurement parameters.   81 

Between 18 and 40 grains were measured per sample. P(�2) is > 23% in all samples 82 

indicating that the individual grain ages show little age dispersion.  Track lengths were 83 

difficult to find in these young samples, thus the length data may be statistically 84 

insignificant for most of the samples.  Nonetheless, track lengths are ~12 – 14 �m.  Dpar 85 

was measured on each age-dated grain.  The average sample Dpar varies from 1.36 to 86 

2.02 �m with the largest Dpar measured on the oldest AFT age sample.  The highest 87 

Dpar value is on for the sample (05PH003A) with the largest AFT age indicating that the 88 

apatites in this sample may be more resistant to annealing and hence give a higher age.  89 

However, the Dpar difference between the samples (1.36 – 2.02 �m) is great enough to 90 

account for only a very small part of the 3- to 5-fold age difference between the samples. 91 

 92 
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 93 
 94 
Apatite (U-Th)/He and fission-track age data 95 
 96 
Methods and results 97 
 98 
The apatites for this study were separated using standard mineral separation techniques 99 

including crushing, sieving, water table, magnetic separator, and heavy liquids. 100 

 101 

(U-Th)/He analyses:  AHe data is shown in Tabe A4. Euhedral, inclusion-free apatite 102 

crystals were hand-picked in alcohol under cross-polars at 110x.  Grain dimensions were 103 

measured for a-emission correction (Farley et al., 1996) and each grain was individually 104 

loaded into Pt tube for He extraction.  Samples were outgassed under a laser at 1100°C.  105 

After spiking with 3He, the 4He/3He ratio was measured on a quadrapole mass 106 

spectometer.  Grains were then dissolved in nitric acid and analyzed for Th, U, and Sm 107 

isotope ratios by ICPMS.  All analytical work was completed at in Ken Farley’s lab at 108 

Caltech. 109 

Analytical uncertainties on individual (U-Th)/He age is ~2%.  However, the actual 110 

age uncertainty based on replicate analyses of individual grains from same samples is 111 

higher.  In three of the samples, three individual grain ages were determined per sample 112 

(Table 1); in these replicate samples, the average standard error is about 12% of the mean 113 

(at 1 �).  In the sample with only one grain age (PH-06A), the mean uncertainty of 12% 114 

is used. 115 

 116 

AHe/AFT closure temperatures 117 
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The AHe ages represent the time since the samples cooled through a closure temperature 118 

of 60-70 °C (Farley, 2000).  The AFT ages represent the time since the samples cooled 119 

through a closure temperatures of about 100 – 120 °C (e.g., Ketcham et al., 1999), for 120 

typical apatites and monotonic cooling at rates typical of active mountain belts (Reiners 121 

and Brandon, 2006). 122 
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