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SUPPLEMENTARY METHODS 

Digital elevation model 

We used the 1-arcsecond digital elevation models (DEMs) from the Shuttle Radar Topography 

Mission (SRTM) (Jarvis et al., 2008) and ALOS 3D World DEM (Takaku et al., 2014), projected 30 m 

resolution (UTM WGS84 Zone 12), as topographic data for our analysis. The SRTM DEM features 

numerous missing values as well as errors that we filled and corrected with the ALOS 3D World 

DEM. Based on the DEM and flow directions obtained with TopoToolbox (Schwanghart and Scherler, 

2014), we derived the stream network with a minimum supporting drainage area of 0.18 km2 which 

refers to 200 pixels in the DEM. 

Knickpoint identification 

The Parachute Creek dissects the Roan Plateau (Berlin and Anderson, 2007). Headward incision 

occurs along vertical-step knickpoints (Whipple et al., 2013), which separate the relict landscape from 

the up to 500-800 m lower bottoms of incised canyons. These knickpoints are pronounced convex 

sections in otherwise concave-upward river profiles. Following preprocessing of the stream network 

using quantile carving (quantile 𝜏𝜏=0.5) (Schwanghart and Scherler, 2017), we identified knickpoints 

with an automated procedure implemented in TopoToolbox (function knickpointfinder) and described 

in Stolle et al. (2019). The procedure adjusts a strictly upward concave profile to the actual river 

profile by relaxing the curvature constraint at locations (knickpoints) where the vertical distance 

between the modelled and the actual profile attains a maximum value. The procedure is repeated until 

the maximum vertical distance is less than a tolerance value which either reflects river profile 
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uncertainty or the minimal knickpoint height. We chose a tolerance value of 70 m which resulted in 

103 knickpoints in the Parachute Creek basin (Figure S1). Visual crosschecking showed that all 

identified knickpoints are related to the upper ledge of the Roan Plateau.  

 

Figure S1: Spatial distribution of knickpoints and knickpoint heights (𝛥𝛥𝛥𝛥) in the Parachute Creek 

basin.  

Determination of stream power parameters 

Commonly, the river-profile concavity (or m/n ratio) is in the range 0.3-1.2 (Whipple et al., 2013), but 

its actual value for a given river is typically unknown. In a steady state landscape with spatially 

invariant rock uplift, the m/n-ratio can be found by maximizing the correlation coefficient between χ 

and elevation, that is, where the river profile attains a linear shape in χ-space (Perron and Royden, 

2013). However, if assumptions (spatially invariable 𝐾𝐾 and 𝑈𝑈, topographic steady state) are violated, 

deriving the m/n ratio is more challenging. An approach which is less sensitive to deviations from 

perfectly graded rivers detects optimal values of the m/n-ratio by maximizing the collinearity of χ of 

all streams in a network using rank statistics (Hergarten et al., 2016). If rivers traverse regions with 

different uplift rates or erosional efficiencies, piecewise regression techniques have also been used 

(Mudd et al., 2014). An alternative approach that is particularly suited to account for transient 

scenarios of river profile evolution has been developed by Goren et al. (2014). 
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Here we apply a different approach to determining both the m/n-ratio as well as 𝐾𝐾. Based on numerous 

geochronological constraints (see references in Berlin and Anderson (2007)), knickpoints in the 

Parachute Creek basin emanated from a common base level fall at the Parachute Creek basin outlet at 

𝑡𝑡0 = 8 Ma. For a linear stream power model (𝑛𝑛 = 1), knickpoint celerity is proportional to upstream 

area to the exponent 𝑚𝑚 (Berlin and Anderson, 2007; Fox et al., 2014). 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐴𝐴(𝑥𝑥)𝑚𝑚 (1) 

 

According to this model, the response time 𝜏𝜏 of a particular location 𝑥𝑥 in the stream network is 

calculated by 

 𝜏𝜏(𝑥𝑥) = �
1

𝐾𝐾𝐾𝐾(𝑥𝑥)𝑚𝑚 𝑑𝑑𝑑𝑑
𝑥𝑥

𝑥𝑥=0
 (2) 

 

Acknowledging that 𝜏𝜏 is inversely proportional to 𝐾𝐾 enables us to introduce the variable 𝜒𝜒 [m] 

 χ = 𝐴𝐴0𝑚𝑚𝐾𝐾𝐾𝐾 (3) 

 

According to the stream-power incision model, knickpoint locations should cluster in a narrow range 

of χ values, if the knickpoints derive from a common base-level fall (Royden and Perron, 2013). With 

𝑡𝑡0 known, we can solve Eq. 3 for 𝑚𝑚 and 𝐾𝐾 by minimizing the variability of knickpoint χ values χkp.  

 min
𝑚𝑚,𝐾𝐾

���
𝜒𝜒𝑘𝑘𝑘𝑘
𝐾𝐾𝐴𝐴0𝑚𝑚

− 𝑡𝑡0�
2

� (4) 

We solve Eq. 4 using a Levenberg-Marquardt nonlinear least squares algorithm (MATLAB function 

nlinfit). The estimated variance-covariance matrix shows a strong correlation between the parameters 

and indicates that a previous estimate of 𝑚𝑚 and 𝐾𝐾 by Berlin and Anderson (2007) is located on the 

major axis of the covariance ellipse (Figure S2). 
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Figure S2: Optimal value and uncertainties of 

m and K that minimize the variability of 

knickpoint 𝜒𝜒 values in the Parachute Creek 

basin without the East Fork creek. A 

previous estimate of Berlin and Anderson 

(2007) for the Roan Plateau (Roan and 

Parachute Creek) had a higher value of 𝑚𝑚 

and lower value of 𝐾𝐾.  

 

Divides 

We calculated divides based on the flow directions derived from the DEM. The divides have variable 

morphologies which we quantitatively describe using the hillslope relief asymmetry metric (Scherler 

and Schwanghart, 2019). The metric calculates the ratio between hillslope relief on either side of the 

divide. The resulting map is shown in Figure S3. Divides that coincide with the margin of the Roan 

Plateau show particularly high values. 

 
Figure S3: Hillslope relief asymmetry in the Parachute Creek basin. 
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Distribution of knickpoint 𝝌𝝌-values 

Knickpoint 𝜒𝜒-values (𝜒𝜒𝑘𝑘𝑘𝑘) in the Parachute Creek basin exhibit a peaked distribution (Fig. 1D). They 

vary between 𝜒𝜒 = 2900 and 4300 m (about a tenth of the entire range of 𝜒𝜒 in the Parachute Creek 

basin), with an average value of 3600 m. The spatial distribution of 𝜒𝜒𝑘𝑘𝑘𝑘 shows that there are consistent 

patterns of either high or low values in tributaries to the Parachute Creek with particularly pronounced 

deviations in the East Fork subbasin (Figure S4). Median 𝜒𝜒𝑘𝑘𝑘𝑘 in the East Fork subbasin are higher 

compared to the other subbasins (significantly different at the 5% significance level). 

 

Figure S4: Knickpoints in the Parachute Creek basin. Knickpoint coloring is according to 𝜒𝜒-values 

measured along the stream network using a m/n-ratio of 0.40 and a reference area A0 = 1x106 m2. 

Knickpoint 𝜒𝜒-values in the East Fork subbasin are generally higher than those of the remaining 

subbasins of the Parachute Creek basin. 

Constraints on area-loss in the East Fork subbasin 

The variable χ is a function of upslope area (see Eq. 2 and 3). By adjusting the upslope area, we can 

potentially reduce the scatter in 𝜒𝜒𝑘𝑘𝑘𝑘. To determine potential changes in area in the East Fork subbasin, 

we used the same approach as above, i.e. minimizing the variability of 𝜒𝜒𝑘𝑘𝑘𝑘. However, this time we 

kept 𝑚𝑚 and 𝐾𝐾 constant, but varied the upstream area. Note that upstream area is calculated by solving 
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the continuity equation of network flow (Strang, 1988; Ahuja et al., 1993; Schwanghart and Kuhn, 

2010), that in matrix notation is written as 

 
𝒂𝒂 = �𝑰𝑰 −𝑴𝑴𝑻𝑻�−1𝒘𝒘 

 
(5) 

𝒂𝒂 is a nx1 vector with upslope areas for each of the n pixels in the DEM, 𝑰𝑰 is the nxn identity matrix, 

and 𝑴𝑴 is the nxn transfer matrix (Schwanghart and Kuhn, 2010) or adjacency matrix of the directed 

flow network (Heckmann et al., 2015) and 𝑻𝑻 indicates its transpose. 𝒘𝒘 is a vector with the rates with 

which water enters the system in every pixel. When calculating upslope area, this rate is usually set as 

pixel area which is then accumulated downstream by Eq. 5. A vector with χ values is accordingly 

calculated by 

 
𝝌𝝌 = (𝑰𝑰 −𝑴𝑴)−1 �

𝐴𝐴0
(𝑰𝑰 − 𝑴𝑴𝑻𝑻)−1𝒘𝒘

𝚫𝚫𝒙𝒙� 

 
(6) 

where 𝚫𝚫𝒙𝒙 is a nx1 vector where each element refers to a distance of each pixel to its downstream 

neighboring pixel. Modifying the area at a specific element 𝑖𝑖 in 𝒘𝒘 allows us to increase or decrease 

upstream area while calculating χ. We select a pixel at x=766733 m and y = 4387345 m in the East 

Fork subbasin and run the optimization scheme  

 min
𝑤𝑤𝑖𝑖

���
𝜒𝜒𝑘𝑘𝑘𝑘
𝐾𝐾𝐴𝐴0𝑚𝑚

− 𝑡𝑡�
2

� (7) 

   

Resulting estimates of area loss are prone to errors due to the variability of 𝜒𝜒𝑘𝑘𝑘𝑘, but also due to 

uncertainties in 𝐾𝐾 and 𝑚𝑚. To propagate these uncertainties to the estimates of area loss, we randomly 

sampled (𝑛𝑛𝑟𝑟  = 100) the bivariate Gaussian probability distributions of 𝑚𝑚 and log(𝐾𝐾) as obtained from 

our nonlinear model fit. Using the random samples of 𝑚𝑚 and 𝐾𝐾, we repeated our optimization method 

to determine area loss. Using 1000 random samples of the probability distributions of each of the 𝑛𝑛𝑟𝑟  

area estimates were subsequently used to determine confidence intervals that include the propagated 

uncertainties in 𝐾𝐾 and 𝑚𝑚.  

Determination of area-changes in multiple subbasins of the Parachute Creek 

Adding or removing drainage area at one location effects 𝜒𝜒𝑘𝑘𝑘𝑘 values along all streams in the drainage 

basin. Moreover, our previous approach neglects that additional loss or gain might have occurred in 

other subbasins, too. Thus, in a second approach, we manually selected three more locations with 

variable drainage areas. We focused on the heads of the main tributaries to the Parachute Creek to 

avoid a too-large number of parameters and possibly poor convergence of the optimization scheme. 

Using the selected locations, we reran the nonlinear optimization (Eq. 7) with now four free 

parameters. The results of the optimization are shown in Figure S5.  
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Figure S5: Determination of potential losses and gains in drainage areas at selected locations (colored 

circles) in the Parachute Creek basin based on minimizing the variability of 𝜒𝜒 values at knickpoint 

locations (black dots). Black lines show the stream network. Coloring of the circles is according to 

modelled area changes and black outlines indicate locations where modelled area changes have 

confidence intervals (95%) that exclude zero area change. Confidence intervals are obtained from the 

Jacobian of nonlinear regression model. The divide of the Parachute Creek is colored using the nearest 

𝜒𝜒 values of channelheads on either side of the divide. Different values on either side indicate potential 

divide movements from lower values to higher values of 𝜒𝜒. Colormaps in the figure are taken from 

Scientific Colour Maps (Crameri, 2018).  

Constraining the timing and amount of area changes 

To assess the dynamics and timing of divide migration, we developed a Lagrangian model of 

knickpoint migration along the network of the Parachute Creek basin. The model solves Eq. 2, but 

allows drainage area 𝐴𝐴 to be variable in time and space:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐴𝐴(𝑥𝑥, 𝑡𝑡)𝑚𝑚 (8) 

The model simulates a knickpoint that is initiated upon base level drop at the Parachute Creek outlet at 

8 Ma. The knickpoint subsequently migrates upstream at velocities that we calculate using Eq. 8. 

Values of 𝐾𝐾 and 𝑚𝑚 are as determined above, and are assumed to be constant in time and space. While 
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migrating upstream, the knickpoint is cloned at confluences from where knickpoints propagate into 

tributaries. The numerical implementation takes the present-day flow network but is meshfree in space 

because knickpoints are allowed to be located at fractions of edges between nodes of the network. 

However, we numerically solve Eq. 8 in time using time steps of 10,000 years, which allows us to 

simulate different scenarios of area loss in the East Fork subbasin. 

In total, we carried out 420 simulations in which we vary the area lost in the East Fork subbasin as 

well as the onset of area-loss. In all simulations we assume a constant rate of area loss upon onset until 

the upstream area in the East Fork subbasin equals the present-day catchment area. The 420 

simulations are run with 20 different initial additional areas equally spaced between 0 and 200 km2 in 

the East Fork subbasin as well as 21 different onsets of area-loss equally spaced between 6 Ma (2 Ma 

following incision at the Parachute Creek outlet) and present day.  

Assessing the simulations requires a method that compares the actual and simulated knickpoints on the 

network. Our comparison relies on spatial kernel density estimates of the actual knickpoint patterns on 

the stream network. We obtained these estimates using the method of McSwiggan et al. (2017) which 

calculates kernel densities around the actual knickpoints by solving the heat equation on the stream 

network (Figure S6) and thus emulates a Gaussian kernel density estimator. This approach should be 

preferred over the commonly used summation of kernel-density estimates on the one-dimensional 

lines because it preserves probability mass at network junctions (Okabe et al., 2009; Okabe and 

Sugihara, 2012; Baddeley et al., 2015; McSwiggan et al., 2017). The diffusivity coefficient of the heat 

equation was chosen so that the resulting bandwidth of the kernel equals 300 m.  

We assessed the goodness-of-fit by summing the kernel densities at the locations of the simulated 

knickpoints (Figure S6). To this end, we took the sum of the log-densities of all simulated knickpoints 

as target function to evaluate how well simulated knickpoints correspond to the actual ones. 

 

Figure S6: 3D visualization of the kernel density estimate of the spatial distribution of actual 

knickpoints on the flow network. The black diamond shows the outlet of the basin. 
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