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SUPPLEMENTAL MATERIAL
Methods
Choice of Flow Laws
The flow laws implemented (Table S2) were chosen as these experimentally-constrained
flow laws are (1) applicable to high pressure conditions in the viscous interface and (2) best
represent the dominant mineralogy/lithology of the reported rock units at high-pressure conditions.
However, it should be noted that recent works have shown abundant diffusion creep at
high-pressure conditions for both mafic (e.g. Stunitz et al., 2020) and metasedimentary (e.g.
Wassman and Stockhert, 2013) lithologies. However, we lack diffusion parameters at high
pressure conditions for non-schist lithologies, making dislocation creep flow laws the only viable
solution. Theoretical pressure-solution creep models exist for schistose lithologies (e.g. Behr &
Platt, 2013), but the parametrization of these flow laws are heavily debated and not yet
experimentally determined, allowing for up to two orders of magnitude variations even for similar
deformation conditions (see Condit et al., 2022 and Schmidt and Platt, 2022). Thus, it is unclear
how these theoretical flow laws can be systematically applied to our collection of sections with

variable schist characteristics.

Choice of Shear Zones

It should be noted that the shear zones chosen were mapped with enough resolution and
clear boundaries as these are required to properly implement the strain rate across the shear zone.
Numerous deep interface shear zones have been reported in literature, however they (1) lack
resolution resolution (e.g. Sambagawa Metamorphic Belt (Takasu, 1984; Ota et al., 2004),

Sanandaj-Sirjan Zone (Davoudian et al., 2008)), (2) have debated deformation evolution paths
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(e.g. Ring Mountain (Wakabayashi, 2015)), (3) lack clear interface boundaries and/or estimated
thicknesses (e.g. Sai-Hatat window (El-Shazly et al., 1997), Belomorian Mobile Belt (Shchipansky
et al., 2012), Sistan mélange (Angiboust et al., 2013), Santa Elena serpentinite mélange (Escuder-
Viruete & Baumgartner, 2014), Lago Superiore Unit (Locatelli et al., 2018), Catalina Schist
(Hoover et al., 2022)), or a combination of the above factors. Thus, while these shear zones are

well-studied, we cannot implement the model.

Strain Rate Calculations
The bulk shear strain rate implemented on the sections are derived using the convergence
plate velocities from plate reconstructions of Merdith et al. (2021) and the thickness of section

(Ly, see Table S1), as
Vs
£ ==
Ly

where ¢ is the bulk shear strain rate, V,. is the convergence velocity, which set the top and bottom

velocities, and L., is the mapped thickness of the interface.

Governing Equations
The two-dimensional numerical code employs conservative finite differences on a fully
staggered Eulerian grid and Lagrangian markers (Ruh et al., 2024). Governing equations include

conservation of mass for incompressible media:

aui . O
au]' -
and conservation of momentum:
—0P 0t;;
—+—Y—-p

aui axi
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where P is dynamic stress, u; and u; are velocities, x; are spatial coordinates, and 7;; is the

deviatoric stress tensor. The equations are discretized on a Eulerian grid to solve for velocity and
pressure. Velocities are interpolated onto the Lagrangian markers following the fourth-order
Runge-Kutta method.

A Maxwell visco-elastic relationship is implemented in the form:
. 1 + 1D crlij
Yo2p'Y 26 Dt
where &;; is the total deviatoric strain rate tensor, ;; is the deviatoric stress tensor, 7 is the effective

. . . . DeyTij . . . . . . . .
viscosity, G is the elastic modulus, and % is the co-rotational time derivative, discretized using

first-order finite differences.

Effective viscosity is computed independently from the power law relationship:

1 Q
(1-n) ;_m ( )

T d Mexp | —

Afr P\rT

where ¢ is strain rate, A is the pre-exponential factor, and 7;; is the second invariant of the stress

n=05-

tensor from the previous timestep, given as

The geometry and boundary conditions of the models are discussed in the main text. A
schematic diagram of the set-up is shown in Fig. S3. The resolution of the models are dependent
on the dimension of the source section, with Eulerian grid spacing set at ~0.05-0.1% of the
thickness (Ly) of the section (see Table A1 for individual model dimensions). Timesteps are taken

at 50% movement along x or y, with a maximum timestep of 100 years, until the model deforms

for ~10 ky.
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Results

To quantify the effect of block geometry and spatial distribution, synthetic models were
used. These models were deformed with the same volumetric distribution (38% blocks, 62%
matrix) and deformation conditions as the low-temperature equivalent of Model 5a (Tauern
Window Eclogite Zone). Fig. S6A uses eclogite blocks in a quartz schist matrix, while Fig. A6B
uses quartz schist blocks in an eclogite matrix. These models show the effect of (1) the size of the
blocks (i.e. a higher number of blocks indicate a smaller average block size), (2) the clustering of
blocks (i.e. more clusters indicate smaller clusters, while an even distribution will show no
clustering), (3) the elongation of the blocks parallel to shear direction (i.e. the ratio of the length
of the shear-parallel axis to the length of the shear-perpendicular axis of an ellipsoidal block), and
(4) the eccentricity of the block parallel to shear (i.e. the amount of flattening parallel to shear).
We observe that in a strong block-weak matrix scenario, typical of mélanges, the spatial
distribution and geometry of lithologies present only varies the strength up to a factor of 1.5. In
contrast, in a weak block-strong matrix scenario, e.g. serpentinite-bearing schistose mélanges and
large-scale blueschist bodies, the weak blocks weaken the bulk strength by up to a factor of 5,
indicative of the blocks accommodating a larger portion of the strain, in contrast to a strong block-
weak matrix set-up, wherein the blocks accommodate minimal strain. These models show that the
spatial distribution and geometry of the lithologies present contribute to the strength variations

observed in the modelled sections.
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Figure S1. (A) Locations of the sections implemented. The numbers correspond to the sections as
listed in Table S1 and Fig. 2. (B) Deformation conditions of the sections listed in Table S1. The

colors correspond to the sections as shown in Fig. 2.
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287

288  Figure S2.1. Yukon-Tanana Terrane, modified from Petrie et al. (2015). The section shows a later

289  unit thrusted into the shear zone. To obtain the thickness, this sliver was removed, and the total
290  thickness remaining was considered the thickness of the section. The section was then extended
291  into a rectangular input — preserving the geometry, spatial relations, and percentage distribution of
292  blocks — and deformed. The viscosity distribution across the section at ~10 ky is shown. As an

293  example of the final output, the effective strength and apparent viscosity evolution at 480°C is also

294  provided.
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Figure S2.2. Condrey Mountain Schist, modified from Tewksbury-Christle et al. (2023). The
section was extended into a rectangular input — preserving the geometry, spatial relations, and
percentage distribution of blocks — and deformed. The viscosity distribution across the section at
~10 ky is shown. As an example of the final output, the effective strength and apparent viscosity

evolution at 450°C is also provided.
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Figure S2.3. Siuna Serpentinite M¢élange, modified from Andji¢ et al. (2019). The underlying unit
below the mélange is unreported, but the aforementioned reference gives an estimated thickness
of 2.5 km. This estimate, with the provided section, was then extended into a rectangular input —
preserving the geometry, spatial relations, and percentage distribution of blocks — and deformed.
The viscosity distribution across the section at ~10 ky is shown. As an example of the final output,

the effective strength and apparent viscosity evolution at 565°C is also provided.
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Figure S2.4. Susa Shear Zone, modified from Ghignone et al. (2020). The thickness of the section
is taken from the lower portion, as these report less overprinting by later structures. The section
was then extended into a rectangular input — preserving the geometry, spatial relations, and
percentage distribution of blocks — and deformed. The viscosity distribution across the section at
~10 ky is shown. As an example of the final output, the effective strength and apparent viscosity

evolution at 500°C is also provided.
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Figure S2.5. Voltri Massif Mélange Zone, modified from Federico et al. (2007). The calcschists

and quartz schist blocks were grouped together in the original map, thus were assigned a schist
rheology. The matrix is also assigned a schist rheology, as it best represents the rheology of
metasediments at high pressure conditions. The section was then extended into a rectangular input
— preserving the geometry, spatial relations, and percentage distribution of blocks — and deformed.
The viscosity distribution across the section at ~10 ky is shown. As an example of the final output,

the effective strength and apparent viscosity evolution at 450°C is also provided.
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Figure S2.6a. Tauern Eclogite Zone, modified from Geologische Bundesanstalt Osterreich (2021).
The map shows vertical beds and Quaternary cover over the unit. The units and structures were
projected based on field observations (Tokle et al., 2022) of nearby units to generate a rectangular
input, which was deformed. The viscosity distribution across the section at ~10 ky is shown. As
an example of the final output, the effective strength and apparent viscosity evolution at 460°C is

also provided.
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Figure S2.6b. Tauern Eclogite Zone, modified from Geologische Bundesanstalt Osterreich (2021).
The map shows vertical beds and Quaternary cover over the unit. The units and structures were
projected based on field observations (Tokle et al., 2022) of nearby units to generate a rectangular
input, which was deformed. The viscosity distribution across the section at ~10 ky is shown. As

an example of the final output, the effective strength and apparent viscosity evolution at 460°C is

also provided.
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Figure S2.7a,b,c. Cycladic Blueschist unit, modified from Keiter et al. (2011). The map contains
detailed structural measurements, which were used to generate cross sections, preserving the
geometry, spatial relations, and percentage distribution of blocks. This section was then extended
a rectangular input and deformed. The viscosity distribution across the section at ~10 ky is shown.
As an example of the final output, the effective strength and apparent viscosity evolution at 475°C

of each section is also provided.
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Figure S2.8. Camlica HP Slice, modified from Sengiin et al. (2011). The map shows a transposed
deep interface shear zone, with high-angle foliations. Based on the structures and the literature, the
thickness of the section was taken as the thickest portion of the shear zone. This was then extended
to a rectangular input — preserving the geometry, spatial relations, and percentage distribution of
blocks — and deformed. The viscosity distribution across the section at ~10 ky is shown. As an

example of the final output, the effective strength and apparent viscosity evolution at 550°C is also

provided.
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Figure S2.9. Halilbagi Unit, modified from Whitney et al. (2014). Using a large-scale section in
the reference as a guide, the section provided was projected to a rectangular input, preserving the
geometry, spatial relations, and percentage distribution of blocks. The rectangular input was then
deformed, and the viscosity distribution across the section at ~10 ky is shown. As an example of

the final output, the effective strength and apparent viscosity evolution at 475°C is also provided.
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Figure S2.10. Seghin Complex, modified from Angiboust et al. (2016). The section was extended
into a rectangular input — preserving the geometry, spatial relations, and percentage distribution of
blocks — and deformed. The viscosity distribution across the section at ~10 ky is shown. As an

example of the final output, the effective strength and apparent viscosity evolution at 470°C is also

provided.
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Figure S2.11. Kulet Eclogite, modified from Kaneko et al. (2000). The map contains detailed
structural measurements, which were used to generate cross sections, preserving the geometry,
spatial relations, and percentage distribution of blocks. This section was then extended a
rectangular input and deformed. The viscosity distribution across the section at ~10 ky is shown.
As an example of the final output, the effective strength and apparent viscosity evolution at 680°C

is also provided.
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Figure S2.13. Dulan UHPM Terrane, modified from Song et al. (2014). The literature reports that
the unit mapped is bounded at the top and bottom, though not explicitly shown in the figure. Thus,
the thickness of the shear zone is taken as the thickness of the published section. From the section,
a rectangular input — preserving the geometry, spatial relations, and percentage distribution of
blocks — was generated. The rectangular input was then deformed, and the viscosity distribution
across the section at ~10 ky is shown. As an example of the final output, the effective strength and

apparent viscosity evolution at 630°C is also provided.
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Figure S2.14. Maobei Slice, modified from Xu et al. (2006). The thickness of the section is taken

based on the structural measurements on the surface. The section was then extended to a
rectangular input — preserving the geometry, spatial relations, and percentage distribution of blocks
— and deformed. The viscosity distribution across the section at ~10 ky is shown. As an example
of the final output, the effective strength and apparent viscosity evolution at 750°C is also

provided.
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387  Figure S3. Set-up implemented to modelled sections, with no slip top and bottom boundaries, and
388  periodic left and right boundaries. Sections are oriented for top to the left shearing, with shear

389  velocity Vx (see Table Al).
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392  Figure S4. Implemented viscous rheologies at a strain rate of 1 x 107> 1/s. See Table A2 for
393  parameters.

394



200 . . T T
100} ]
50+ .
—
[a W
=
e
praw)
[@)]
c
g 10t 1
=
wn
'I 1 1 1 1
400 500 600 700 800 900
Temperature [OC]
l:| (1) Yukon-Tanana Terrane, Canada - (7c) Cycladic Blueschist Unit (C), Greece
- (2) Condrey Mountain Schist, W. USA - (8) Camlica HP Slice, W. Turkey
- (3) Siuna Serpentinite Melange, Nicaragua |:| (9) Halilbagi Unit, E. Turkey
[ ] @ SusaShear Zone, W. Alps [ ](10)Seghin Complex, Iran
\:| (5) Voltri Massif Melange, W. Alps - (11) Kulet Eclogite, N. Kazahkstan
[__] (6a) Tauem Eclogite Zone (A), E. Alps [ (12) Makbal Eclogite, Kyrgyzstan
- (6b) Tauern Eclogite Zone (B), E. Alps - (13) Dulan UHPM Terrane, N.W. China
- (7a) Cycladic Blueschist Unit (A), Greece - (14) Maobei Slice, China
\:| (7b) Cycladic Blueschist Unit (B), Greece
395
396 Figure S5. Strength distribution of the 17 modeled shear zones.
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Figure S6. Effect of block geometry and distribution on model strength, with (A) weak matrix-

strong block and (B) strong matrix-weak block combinations. The strength of these sections are

normalized to strength from the mixing model of Tullis et al. (1991).



Dimensions” Deformation Conditions  Age of Deformation
Unit Locality Ly (m) Lx (m) P (GPa) T (°C) Age (Ma) Vx” (cm/yr)
1 Yukon-Tanana Terrane Y ukon, Canada 2735 4104 2.33 480 266 15.0
2 Condrey Mountain Schist Klamath Mtns., W. USA 4741 3754 0.65-1.1 450 - 470 133-119 16.6
3 Siuna Serpentinite Melange N.E. Nicaragua 2479 2838 1.5-1.7 565-614 ~140 6.0
4 Susa Shear Zone W. Alps 432 1608 2.1-25 500 - 530 44 - 37 1.0
5 Voltri Massif Mélange Zone W. Alps 77 53 1.3-2.0 450 - 500 43 - 40 0.8
o Tauem Eclogite Zone E. Alps pott 19 460-540 38- 32 1.4
Ta 691 868
7b Cycladic Blueschist Unit Syros, Greece 483 468 1.1-1.8 475 - 550 ~45 1.5
Te 248 291
8 Camlica HP Slice Biga, W. Turkey 938 3205 1.2-22 550 - 675 69 - 65 1.5
9 Halilbagi Unit Sivrihisar, E. Turkey 973 1136 22-24 475 - 520 88.5 1.5
10 Seghin Complex Zagros, Iran 945 3119 14-1.6 470 - 530 72.7-62.5 3.6
11 Kulet Eclogite Kokchetav Massif, N. Kazahkstan 6658 6808 2.7-3.6 680 - 780 530 7.0
12 Makbal Eclogite Tien Shan, Kyrgyzstan 805 354 22-25 550-610 480 2.0
13 Dulan UHPM Terrane North Qaidam Belt, N.W. China 727 276 29-32 630 - 690 438 - 420 4.3
14 Maobei Slice Dabie-Sulu, China 1942 3515 25-28 750 - 850 221 -216 6.6

“See Figure S1 for orientation of sections. Resolution is dependent on the scale of the source image, and is set using a square pixel with dimensions ~1% of

Lx. * Shear zone velocities are taken from plate reconstruction convergence velocities of Meredith et al. (2021).




TABLE S1. SOURCE MATERIAL FOR MODELED SHEAR ZONES

Estimated Location of Unit

Map Source Deformation Conditions Source Age Source Latitude (°N) Longitude (°E) Plate A
Petrie et al. (2015) Ghent & Erdmer (2011) Petrie et al. (2015) 61.46 -132.66 16104
Tewksbury-Christle et al. (2023) Tewksbury-Christle et al. (2023) Tewksbury-Christle et al. (2023) 41.94 -123.02 101
Andji¢ et al. (2019) Flores et al. (2015) Flores et al. (2015) 13.60 -84.81 2035
Ghignone, Gattiglio, et al. (2020) Ghignone, Balestro, et al. (2020) Ghignone et al. (2021) 45.15 7.08 305
Federico et al. 2007 Liou et al., 1988 Federico et al. (2007) 44.54 8.48 305
Geologische B“(r;%‘;sf‘;’sm Osterreich Tokle et al., (2022) Kurz et al. (2008) 47.06 12.35 701
Keiter et al. (2011) Spear et al. (2024) Philippon et al. (2012) 37.49 2491 301
Sengiin et al. (2011) Sengiin et al. (2014) Sengiin et al. (2014) 33.93 26.49 521
Whitney et al. (2014) Davis & Whitney (2006) Okay & Satir (2000) 39.60 31.25 521
Angiboust et al. (2016) Angiboust et al. (2016) Angiboust et al. (2016) 29.10 56.95 301
Kaneko et al. (2000) Zhang et al. (2012) Zhang et al. (2012) 53.02 69.49 460
Sobolev et al. (1986), Tagiri et al. (2010) Togonbaeva et al. (2010) Tagiri et al. (1995) 39.55 72.75 590
Song et al. (2014) Song et al. (2014) Song et al. (2014) 36.60 98.44 451

Xu et al. (2006) Xu et al. (2006) Zhang et al. (2006) 34.47 118.77 601




Parameters for Shear Velocity (Merdith et al., 2021)

Plate B Notes Reference Latitude (°N) Reference Longitude (°E)
16106  Yukon-Tanana / Cassier (NAM) 68.70 -123.45
902 Farallon/North America 41.94 -123.02
224 Chortis/Carribean (proto-CHIP?) 9.17 -44.55
307 Armorica/Adria 50.01 12.89
307 Armorica/Adria 44.52 8.50
. . 12.35
301 Africa/Eurasia 47.06 12.35
308 Eurasia/Diniride 34.50 21.87
522 Sakarya/Menderes-Taurides Block 43.67 35.24
522 Sakarya/Menderes-Taurides Block 39.68 31.24
503 Eurasia/Arabia 28.20 56.23
980441 Chu Yili/Big ocean plate 53.04 69.73
602 Northern Pamirs/South China 39.28 72.85
456 Alashan/Qaidam-Qilian 39.06 92.35
602 North China/South China 31.34 117.57




TABLE S2. RHEOLOGICAL INPUT PARAMETERS

Rheology Reported Lithologies * n m r Q°[kJmol] A[MPa™ um"s"] Reference

1 Eclogite Eclogite, metabasalt, metagabbro 3.5 0 0 403 +27.2P 103.3 J. Zhang & Green, 2007 (disl.)
2 Wet Quartz Quartzite, metachert 4 0 1 125 1.75 x 1072 Tokle etal., 2019 (disl.)

3 Blueschist Blueschist 2 1° 0 383 2.97 x 107" Tokle et al., 2023 (diff.)

4 Wet Olivine Meta-peridotite, peridotite 35 0 1.2" 480+ 22P 90 Hirth & Kohlstedt, 2003 (disl.)
5 Schist Quartz schist, mica schist 4 o0 1¢ 125 1.75 x 107" Tokle et al., 2019 (disl.)

6 Antigorite Serpentinite 36 0 0 89+3.2P ¢ 080 Hilairet et al., 2007 (disl.)

7 Aragonite Marble, calcschist 52 0 0 249 ¢ Rybacki et al., 2003 (disl.)
Note: The parameters following the relation ¢ = Ac" ;—rm exp (— %), where € is strain rate (1/s), o is stress (MPa), f is fugacity (MPa), d is
grain size (Lm), Q is activation enthalpy (kJ/mol), R is the gas constant (8.3 14 ﬁ), T is temperature (K), and n, m, and m are the stress,

*These are the lithologies as mapped, which were re-interpreted based on available flow laws.

® Activation enthalpy is reported as either Q or as activation energy (Ea), volume (V), and pressure (P), as Q = Ea+PV.
¢ disl. = dislocation creep flow laws, diff. = diffusion creep flow laws.

res
d Quartz water fugacity is implemented using the analytical solution of (Sterner & Pitzer, 1994), givenasInf = [ln o+ ART + QRLT] +
P,T

In(RT) — 1, where fis fugacity, A™ isresidual Helmholtz energy, and @ is molar density. Molarvolume and fugacity of pure water was

determined using (Pitzer & Sterner, 1994), and the Dekker method (Dekker, 1969)was used to numerically solve forvolume given pressure
and temperature. The implemented code was modified from Withers (2017).

“For blueschists, boudin spacing § is used instead of d, and is set at 100 pm.
"Wet olivine fugacity (Coy) was set to 600 MPa (Hirth & Kohlstedt, 2003).
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