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1. Analytical methods
Mg-Zn-Mo isotope analyses

All the samples were comminuted in a metal free environment to avoid Mg-Zn-Mo
contamination from metal alloys, and finally were powdered to 200 mesh by using an agate
mortar. Purification and isotopic analysis of Mg, Zn and Mo were performed respectively at the
Ore Deposit and Exploration Centre, Hefei University of Technology, China, the Wuhan Sample
Solution Analytical Technology Co., Ltd, Wuhan, China, and the State Key Laboratory of
Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
(SKLaBIG, GIG-CAS). All sample preparation and digestion work was undertaken in a Class
1000 clean laboratory equipped with Class 100 laminar-flow exhaust hoods. The analytical
results are presented in Table S1.

For Mg isotopes, approximately 10—20 mg of sample powders was weighed and then
dissolved with a three-step procedure. Optima grade acids were added in the following sequence:
(I) a mixture of concentrated HF and HNOs in a ratio of 2:1; (II) concentrated aqua regia (the
mixture of HCI/HNO3 in a ratio of 3:1); and (III) concentrated HNO3. Then, the beakers were
heated on a hotplate at 125—-135°C with caps on for 1-2 days. After digestion and drying, the
samples were dissolved in 1 or 2 mL of 0.5 mol L' HNO; for column chemistry. The detailed
processes of column chromatography are the same as those described by Huang et al. (2021). In
brief, the cation exchange resin (AG50W-X8) was backwashed and settled under gravity
between each elution, followed by the cleaning procedure with 24 mL of 6 mol L™ double-
distilled HCI and then 10 mL MQ-water. After conditioning with 5 mL of 0.5 mol L' HNO3,
samples were loaded in 400 pL of 0.5 mol L' HNO3, then a combination of double-distilled 0.5

mol L' HNO; and 1.0 mol L' HNOs were used as the eluent to separate Mg. Magnesium
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isotopic ratios were measured on a Thermo-Fisher Scientific Neptune-Plus multi-collector
inductively coupled plasma mass spectrometer (MC-ICP-MS). A concentration-matched
standard-sample bracketing technique was carried out to correct the instrumental drift and mass
bias. A wet plasma was used with a quartz dual cyclonic-spray chamber and a 50 uL min—1 PFA
MicroFlow Teflon nebulizer (Elemental Scientific Inc., U.S.A.). A multicollector Faraday cup
configuration of L3, C and H3 was used to measure **Mg, Mg, and **Mg. The integration time
of data acquisition was set to 2.097 s per cycle, with one block of 30 cycles for Mg isotope
measurements. Cross-contamination between samples was eliminated by washing the sample-
introduction system with 5% and 2% HNO3 for approximately 3 min. Magnesium isotope

measurements were carried out in low resolution mode (M/AM ~ 1200). Usually, the separated

Mg cuts were diluted to ~200 ppb Mg solution in 2% (m/m) HNO; to obtain a >*Mg intensity of
approximately 7-8 V. The Mg isotopic compositions are expressed in standard notation in per
mil relative to standard reference material DSM-3: 5XMg(%o) =
[(*Mg/2*Mg)sampie/ M g/**Mg)psms — 1] x 1000, where X = 25 and 26. The long-term external
precision of §*Mg is better than 0.06 %o (2SD), based on repeated analyses of reference
materials and natural samples. To control analytical quality, each sample was measured at least 4
times and then averaged (Table S1). The rock standards BCR-2 and BHVO-2 were
simultaneously processed with the samples to monitor accuracy and yielded 5°°/**Mg values of -
0.16%0+0.07%0 and -0.19+0.08%o (Table S1), respectively, consistent with those from previous
studies (Teng et al., 2007; Wang et al., 2017). Repeated digestion and analysis of individual rock
sample of 14QW100 yielded §%%/**Mg difference <0.07%o (Table S1). The total procedural Mg
blank during this study was less than 6 ng. The §°°**Mg and §*?*Mg values of all samples

analyzed here fall onto a mass-dependent fractionation line with a slope of 0.5048 (Figure S1).
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For Zn isotopes, approximately 50 mg of sample powders was weighed into in-house
PTFE-lined steel bombs and dissolved in Iml of concentrated HNO; and 1 ml of concentrated
HF in the oven at 190°C for 48 hours. The digest contents were then dried and redissolved with 1
ml of concentrated HNOs. This step was repeated twice to completely remove HF. Then, 1 ml of
concentrated HNO3 and 2 ml MQ-water were added, and the bombs were screwed and placed in
the oven overnight at 190°C. The digests were dried and redissolved with 1 ml of concentrated
HCl to convert the sample from nitrate form to chloride form. Finally, the digests were
evaporated to dryness and redissolved in 1ml of 8 mol L' HCI + 0.001% H,O: in preparation for
ion exchange separation. Zinc was purified by a single column ion-exchange chromatography
using Bio-Rad strong anion resin AG-MP-1M (Zhu et al., 2019). In brief, 2 ml pre-cleaned resin
was loaded onto the cleaned column. Matrix elements (e.g., K, Ca, Na, Mg, Al, Ti, Cr, Ni, and
Mn) were eluted in the first 10 ml of 8 mol L' HCI and Cu was collected in the following 24 ml
of 8 mol L' HCI + 0.001% H,0>. Then, after the Fe and Co were eluted by 12 ml of 0.5 mol L"!
HCI, the Zn fraction was collected in 10 ml of 0.5 mol L' HNOs. The recovery for Zn is >99%.
The total procedural blanks are always <10 ng for Zn based on long-term analyses. The Zn
fractions were evaporated to dryness, dissolved in 2% HNOs, and then re-evaporated to dryness
and re-dissolved in 2% HNOs3 to remove all chlorine prior to isotope analysis. Zinc isotopic
ratios were measured on a Thermo-Fisher Scientific Neptune-Plus MC-ICP-MS. Samples were
introduced at a concentration of 200 ppb in 2% HNOs3 using wet plasma method. Standard-
sample bracketing method was used in order to correct for instrumental mass fractionation. Zinc
isotopic data are reported in standard notation in per mil relative to standard reference material
JMC- 3-0749L: 8%Zn(%o) = [(*Zn'**Zn)sampie/(*Zn/**Zn)mc Lyon 3-0740L — 1] X 1000, where X = 66

and 68. The long-term external precision of §°Zn is better than 0.05 %o (2SD), based on repeated
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analyses of reference materials and natural samples. To control analytical quality, each sample
was measured at least 3 times and then averaged (Table S1). International standards JA-2 and
BHVO-2 were simultaneously processed with the samples to monitor accuracy and yielded
590/647n of 0.29+0.04%o and 0.30+0.02%o (Table S1), respectively, consistent with those from
previous studies (Chen et al., 2016). Repeated digestion and analysis of individual rock sample
of 14QW163 yielded §°/%*Zn difference <0.04%o (Table S1). The §°°%*Zn and §%%%*Zn values of
all samples analyzed here fall onto a mass-dependent fractionation line with a slope of 1.9543
(Figure S2).

For Mo isotopes, an appropriate mass of sample powder (50—400 mg) was weighed out to
provide ~120 ng of Mo. About 120 ng of *’Mo—'"’Mo double spike solution was added before
digestion of the samples. The sample-spike mixture was digested by using 4 ml of concentrated
HF and 2 ml of concentrated HNO3 in closed beakers at 120°C for 48 hours. After digestion and
drying, the samples were dissolved in 1 ml of concentrated HCI and then evaporated to dryness.
The residue was redissolved in 2—4 ml of a mixture of 0.1 mol L' HF/1 mol L' HCI, at which
point it was ready for column separation. Molybdenum separation and purification were
achieved using an extraction chromatographic resin of N-benzoyl-N-phenyl hydroxylamine
manufactured in-house, following the protocols of Li et al. (2014). In brief, 0.5 ml of pre-cleaned
resin was packed in a Poly-Prep column. A 2 ml aliquot of the sample solution was loaded onto
the column, and the resin was washed with 8 ml of 0.1 mol L' HF/1 mol L' HCL. Finally, the
adsorbed Mo was eluted with 8 ml of 6 mol L' HF/1 mol L™! HCI. The Mo was collected in 15
ml PFA vials and evaporated to dryness on a hot plate at 120 °C. Three drops of concentrated
HNOs3 and H>O; were added to the evaporated Mo to decompose any organic residue. Following

this, 1 ml of 3% HNOs was added to the Mo residue, after which the solution was ready for Mo
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isotopic ratio measurement. Molybdenum isotope measurement was performed on a Thermo-
Fisher Scientific Neptune-Plus MC-ICP-MS utilizing double spike analysis to correct for
instrumental mass bias. The isotopic composition of Mo is expressed as §°%/°°Mo relative to the
NIST SRM 3134 standard: §°%/**Mo(%0) = (**Mo0/*>Mo)sample/(**Mo/*>Mo)nist srm 3134 — 1. The
precision of Mo isotope ratio analyses was assessed by repeated measurements of NIST SRM
3134 (0.00%0%0.05%0, n=29) (Table S2). The rock standards GBW07105 and AGV-2 were
simultaneously processed with the samples to monitor accuracy and yielded 8°%/°°Mo values of -
0.56%0%0.07%0 and -0.18+0.07%o, respectively (Table S1), consistent with those from previous
studies (Willbold et al., 2016; Zhao et al., 2016). Molybdenum concentrations were calculated
from spiked isotope measurements. The rock standards GBWO07105 and AGV-2 gave a
concentration of 3.00 ppm and 1.98 ppm, respectively (Table S1), also consistent with the values
reported by the previous studies (Willbold et al., 2016; Zhao et al., 2016). Repeated digestion
and analysis of individual rock sample of 14QW44 yielded §°%/**Mo difference <0.06%o (Table
S1). The total procedural blank for Mo was 0.38+0.37 ng (2SD, n=2), far less than total Mo in
the samples and standards.
High-resolution 2-D elemental distribution maps

High-resolution, two-dimensional, elemental X-ray mapping (Figure S6) was performed
using a JEOL JXA-iSP100 Electron Probe Microanalyzer equipped with five wavelength-
dispersive spectrometers (WDS) at the Laboratory of Guangzhou Tuoyan Analytical Technology
Co., Ltd. Operating conditions for the X-ray mapping involved an accelerating voltage of 20 kV,
a beam current of 100 nA, a step size of 1 um and dwell time of 30 ms. Si and Mg were analyzed

using a TAP crystal. K was analyzed with a PETL crystal. Ca was analyzed with a PETJ crystal.



137

138

139

140

141

142

143

144

145

146

147

148

Fe was analyzed using a LIFH crystal. Elemental Ko line was chosen for Si, Mg, K, Ca and Fe
during analyses.
Raman spectroscopic measurements

Raman spectra of representative calcite and CO» bubble inclusions in clinopyroxene from
the Kangxiwa mantle xenoliths were obtained using a WITec alpha300 R confocal Raman
spectrometer at the SKLaBIG, GIG-CAS, using a 532-nm laser, a 300-mm™' grating, a 100x
Zeiss objective, and a back-illuminated charged-coupled detector (1600 x 200 pixels). The
Raman spectrometer was calibrated using a standard silicon wafer. Spot Raman spectra from the
inclusions were acquired by averaging 5—10 acquisition sequences, with acquisition times of 100
s per sequence. Raman spectra were processed using the Control Five software. The analytical

results are presented in Table S3.
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2. The petrography, elemental and isotopic compositions of the western Kunlun
ultrapotassic volcanoes and the Kangxiwa mantle xenoliths

Ultrapotassic volcanoes

Ultrapotassic volcanic activities have been widely identified in the western Kunlun area,
probably representing the youngest magmatism in the Tibetan Plateau (Guo et al., 2019; Wang et
al., 2023). The ages of these volcanoes range from ~8.3 Ma to the present, with a decreasing
trend from south to north (Figure S3). Representative ultrapotassic samples were collected from
the Kangxiwa, Dahongliutan, Quanshuigou, and Keliya areas (Figure S3). Petrographic
examination reveals no evidence of hydrothermal or weathering modification in these rocks
(Figure S4). These samples range in composition from basalt to dacite and exhibit porphyritic
textures (Figure S7). The phenocrysts (~10-15 vol %) mainly comprise clinopyroxene,
plagioclase, phlogopite, olivine, and accessory orthopyroxene and K-feldspar. They have higher
K>O contents (2.52-5.87 wt %, mean=4.74 wt %) relative to Na>O (2.31-5.12 wt %, mean=3.54
wt %) (Table S4). The western Kunlun ultrapotassic lavas display arc-like trace-element patterns
and remarkably enriched Sr—Nd-Pb—Hf isotope compositions that closely resemble the EM2
mantle end-member represented by the Samoan hotspot (Figure S8-S9). These features indicate
that their mantle source contain recycled sedimentary materials (with compositions comparable
to the upper continental crust) (Jackson et al., 2007; Wang et al., 2023). The ultrapotassic lavas
exhibit lower §*°Mg (-0.39%o to -0.19 %o) and higher §°Zn (+0.27%o to +0.36%o) values (Figure
3). Their §°*Mo values range from -0.78%o to 0%o (Figure 3). The varying Mg-Zn-Mo isotopic
compositions across different locations likely indicate different proportions of recycled
carbonate-rich sediments in the mantle source, accompanied by minor crustal contamination

(<10%) (Figure 3).
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Mantle xenoliths

Mantle xenoliths entrained in the Kangxiwa ultrapotassic lavas are small with diameters
generally ranging from 0.5 to 1.5 cm (Figure S4). These xenoliths, primarily lherzolite, appear
fresh and consist of olivine, orthopyroxene, clinopyroxene, and spinel (Figure S4). In addition,
they contain abundant primary carbonate minerals, mainly dolomite and calcite (Figure S5).
These carbonates coexist with clinopyroxene, occurring either interstitially or as mineral
inclusions (Figure S5). Dolomite is generally subhedral to euhedral in shape and can reach size
of up to 300 um, whereas calcite is less common and typically smaller in size (Figure S5).
Furthermore, clinopyroxene typically contains CO> bubbles (Figure S5), consistent with
carbonate metasomatism via interactions between peridotitic mantle and CaCOs-rich melts/fluids,
according to the following reaction:

Orthopyroxene + Calcite/Dolomite — Olivine + Clinopyroxene + CO>

Clinopyroxenes in the mantle xenoliths exhibit enriched ¥’Sr/*®Sr ratios (0.7095-0.7113),
consistent with those of the western Kunlun ultrapotassic lavas (0.7080-0.7100) (Figure 3)
(Tables S4-S5). This suggests a genetic link between the mantle xenoliths and the ultrapotassic

lavas, demonstrating that the latter originated from a lithospheric mantle.
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3. Effects of alteration, crustal contamination, and magmatic processes on Mg-Zn-Mo
isotope systematics.

Alteration

The studied ultrapotassic lavas are fresh with low LOI (<3 wt. %) (Table S4). There are
no correlations between Mg-Zn isotope data and LOI (Figure S11), indicating that alteration did
not affect the Mg-Zn isotope data. However, there is a negative correlation between Mo and
LOI, which indicates that Mo isotope data may have more or less been mobilized. The variations
of §®Mo may be not related to alteration but possibly resulted from some other mechanism (e.g.,
fluid migration during subduction). This is because weathering-related Mo depletion would
cause a negative correlation between Ce/Mo and Ba/Th ratios (Huang et al., 2023), which is not
observed in the studied ultrapotassic lavas (Figure S11). Thus, we suggest that alteration did not
significantly affect the Mg-Zn-Mo isotope data.
Crustal contamination

Mantle-derived magmas may be subject to some degree of crustal contamination on their
way to the surface. The significant crustal thickness (>50 km) of the Tibetan Plateau increases
the possibility of magmas being contaminated by crustal materials. However, there are no
correlations between SiO» and Sr-Nd-Pb-Hf isotopic ratios (Figure 10), indicating that crustal
contamination is negligible in the generation of the western Kunlun ultrapotassic lavas. In
addition, the studied ultrapotassic lavas have 6°*Mo (-0.78%o to 0%o) values much lower than the
average continental crust (§°*Mo of +0.10%o to +0.35%o, Willbold and Elliott, 2017), precluding
significant crustal contamination. Mg-Zn-Mo-Sr isotopic modeling further reveals that the

ultrapotassic magmas were contaminated by Indian crustal components by less than 10% (Figure



211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

3). It is noted that the Keliya samples exhibit more radiogenic 3’St/*Sr ratios than other locations
(Figure 3), suggesting a relatively higher degree of crustal contamination.
Magmatic processes

The western Kunlun ultrapotassic lavas have experienced olivine, clinopyroxene and
plagioclase fractionation (Wang et al., 2023). However, there are no correlations between the
Mg-Zn-Mo isotope data and geochemical parameters such as Mg#, Ni, CaO/Al,O; and Eu
(Figure S11). Thus, it can be ruled out that fractional crystallization (e.g., olivine, clinopyroxene
and plagioclase) processes affected the Mg-Zn-Mo isotopic compositions of the ultrapotassic
lavas.

Previous studies have suggested that varying degrees of partial melting of the mantle
could lead to Mg-Zn-Mo isotopic fractionation (Doucet et al., 2016; Teng et al., 2017; McCoy-
West et al., 2019; Day et al., 2022). A weak correlation between §°*Mo and La/Sm (a proxy for
the degree of partial melting) is observed (Figure S11), suggesting that partial melting may have
caused Mo isotopic fractionation in the studied ultrapotassic lavas. Large-degree (10-15%)
partial melts of the depleted mantle (i.e., MORBs) have slightly heavier §°*Mo values than the
average chondritic value (-0.14%0+0.02%0), and thus Liang et al. (2017) suggested that Mo
isotopic fractionation is limited (A8°*Mo0<0.15%0) during moderate degrees of partial melting.
However, the studied ultrapotassic lavas formed by much lower degrees of partial melting (<5%)
(Wang et al., 2023) and display significant §®Mo variations of 0.78%o.. This suggests that partial
melting alone cannot explain the variable §°*Mo measured. Based on this evidence and the
absence of a correlation between Mg-Zn isotope data and La/Sm (Figure S11), we suggest that
partial melting did not significantly impact the Mg-Zn-Mo isotopic compositions of the

ultrapotassic lavas.



234 In summary, we suggest that the §°°Mg—8°Zn—5"®Mo compositions of the western
235  Kunlun ultrapotassic lavas are inherited mainly from their mantle source.
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4. Details of Mg-Zn-Mo-Sr isotope modeling

Mantle carbonatite metasomatism is modeled by binary mixing between normal mantle-
derived melts (MORB) and carbonate melts (calcite, dolomite and magnesite) (Figure 3). Crustal
contaminant is modeled by binary mixing between normal mantle-derived melts (MORB) and
Indian continental crust (Figure. 3). The equation of the above modeling is expressed by:

Icm = Ica*(Co*X/Cr) + Lep*[Cr*(1-X)/Cni]

Where C,, Cp, and C, are the concentration of an element in endmember a, in
endmember b, and in mixed endmember resulted from mixing of endmembers a and b,
respectively. X (0—100%) is the degree of mixing. Ic,, Icp, and Ic, are the isotopic ratio of any
endmember in magma a, endmember b, and in mixed endmember resulting from mixing of
endmembers a and b, respectively.

Details about the trace element and isotope data for end-members used in geochemical

modeling are presented in Table S7.
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5. Estimation of carbon (elemental C) input flux into the lithospheric mantle and volcanic
CO:2 output flux into the atmosphere

To estimate the input flux of recycled carbon (elemental C) Minput (C, Mt/yr) into the
lithospheric mantle and output flux of volcanic CO: into the atmosphere Moutput (CO2, Mt/yr), we
use the Monte Carlo modeling following method described by Shu et al. (2023). The basic
principles and formulas for the Monte Carlo modeling are described below:

(1) Minpus (C, Mt/yr) = (0 BEX*y*L* 0 Fwee*p)/u
(2) Moupur (CO2, Mt/yr) = Minpu™e*44/12

In Equation (1), where a and P represent the length (600 km) and width (300 km) of the
studied region, X is the thickness of the metasomatized lithospheric mantle (1-80 km) in NW
Tibet, y (10%—50%) is the percentage by area of the mantle that has been metasomatized (Shu et
al., 2023), A (0%—50%) is the mass fraction of carbonate-rich sediment melts calculated in
Figure 3, oc (10%—50%) 1s the proportion of carbonates in the carbonate-rich sediments, ®cc
(12%) is the mass fraction of C in carbonates (assumed to be calcite), p (2.4*¥10°g/km?’) is the
density of carbonate melts in the upper mantle (Ritter et al., 2020) and p is the initial eruption
ages (~8.3 Ma) of the ultrapotassic lavas in the western Kunlun area (Guo et al., 2019; Wang et
al., 2023). In Equation (2), where € (60%—90%) is the rational recycling efficiency of subducted
carbon to the atmosphere through subaerial volcanoes (Plank and Manning, 2019). The detailed
Monte Carlo modeling results are presented in Tables S8-S9. We acknowledge the large
uncertainties associated with Monte Carlo modeling for CO» fluxes (Table S9), primarily due to
the large uncertainties in input parameters (Table S8). However, we contend that our modeling
approach is reasonable. This is based not only on the selection of reasonable input parameters but

also on the alignment of the simulated emission rates with observed outputs from dominant



274  volcanic fields in NW Tibet as well as independent estimate from the Sr-Nd-Pb isotope mass
275  balance (Guo et al., 2021). Thus, our estimates provide an important reference for future studies.

276



277  Figure S1. Relationship between measured §*°Mg and §**Mg values for ultrapotassic volcanoes
278  in NW Tibet and standard materials. All samples analyzed define the mass fractionation line with

279  a slope of 0.5048, indicating that there are no analytical artifacts from unresolved isobaric

280  interferences on measured Mg isotopic ratios.

0.1
y=0.5048x-0.0191
R2=0.7642
0+
-0.1
~
o -0.2 +
=
o)
-0.3 F
@ Samples in this study
O Replicate sample
0.4 |
@ BHVO-2
@ BCR-2
N R
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

281 5°°Mg (%)

282



283  Figure S2. Relationship between measured §°*Zn and §°°Zn values for ultrapotassic volcanoes in
284  NW Tibet and standard materials. All samples analyzed define the mass fractionation line with a

285 slope of 1.9543, indicating that there are no analytical artifacts from unresolved isobaric

286  interferences on measured Zn isotopic ratios.
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289  Figure S3. Spatio-temporal distribution of ultrapotassic volcanoes from the western Kunlun area

290  of NW Tibet (after Guo et al., 2019, Tang et al., 2022 and Wang et al., 2023).
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Figure S4. (A-B) Field photos of mantle xenoliths in the Kangxiwa ultrapotassic lavas; (C)
photomicrograph (orthogonal light) of the Kangxiwa ultrapotassic lavas; (d) photomicrograph
(orthogonal light) of the Kangxiwa mantle xenoliths; Cpx=clinopyroxene; Phl=phlogopite;
Opx=orthopyroxene. The Sr isotope spots of clinopyroxene were analyzed by Tang et al. (2022),

and the data are listed in Table S5.

*Peridotite
xenolith
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Figure SS. (A-D) BSE images of carbonate minerals in the clinopyroxene from the Kangxiwa

mantle xenoliths; (E-F) Photomicrograph (transmission light) of abundant CO> bubbles in the

clinopyroxene of the Kangxiwa mantle xenoliths. Cpx=clinopyroxene; Cal=calcite; Dol=

dolomite.
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305  Figure S6. (A) BSE and (B-F) EPMA elemental (e.g., Ca, Mg, K, Si and Fe) X-ray maps of

306 peridotite xenoliths in the Kangxiwa ultrapotassic lavas. Cpx=clinopyroxene; Dol=Dolomite.
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309  Figure S7. (A) Total alkalis vs SiO; and (B) K20 vs SiO; for the studied ultrapotassic lavas from
310  the western Kunlun area of NW Tibet. Published data sources for Cenozoic ultrapotassic rocks

311  from Northern Tibet and Southern Tibet can be found in Wang et al. (2023).
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314  Figure S8. (A) Chondrite-normalized REE patterns and (B) primitive mantle-normalized spider
315 diagrams for the studied ultrapotassic lavas from the western Kunlun area of NW Tibet.
316  Normalizing values are from McDonough et al. (1995). Also shown are typical end-member
317  reservoirs, including enrich mantle-2 (EM2, Samoan) (Jackson et al., 2007), UCC (Rudnick and
318  Gao, 2014), and MORB (Gale et al., 2013).
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Figure S9. (A) '"Nd/'*Nd vs. ¥’Sr/*Sr, (B) eur vs. eng, (C) ¥’Sr/%Sr vs. 2°°Pb/2%Pb and (D)

ISNA/"Nd vs. 2°Pb/2%Pb for the studied ultrapotassic lavas from the western Kunlun area of

NW Tibet. Published data sources for Cenozoic ultrapotassic rocks from Northern Tibet and

Southern Tibet can be found in Wang et al. (2023). Data sources for Sr isotope of clinopyroxenes

from Kangxiwa mantle xenoliths are from Tang et al. (2022). Data sources for MORB, EM1

(Pitcairn) and EM2 (Samoa) are from http://georoc.mpch-mainz.gwdg.de/georoc/. In (B), The

terrestrial array (enr = 1.36%eng + 2.95) is referenced from Vervoort er al. (1999).
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Figure S10. (A) ¥St/%Sr vs. SiOz, (B) "*Nd/'*Nd vs. SiOz, (C) 2*Pb/2*Pb vs. SiO, and (D)

76H{/'"THf vs. SiO» for the studied ultrapotassic lavas from the western Kunlun area of NW

Tibet. There are no correlations between SiO» and Sr-Nd-Pb-Hf isotopic ratios, indicating that

crustal
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Figure S11. Plots of Mg-Zn-Mo isotopes vs. LOI, La/Sm, Mg#, Ni, CaO/Al>O3 and Eu for the

Cenozoic ultrapotassic lavas from the western Kunlun area of NW Tibet. Plot of Ba/Th vs

Ce/Mo for the studied ultrapotassic lavas. The green area represents normal mantle §**Mg (-

0.236+0.006%0) (Liu et al., 2023), 8%Zn (+0.16+£0.06%0) (Sossi et al., 2018) and §*Mo (-

0.20+£0.01%0) (McCoy-West et al., 2019) values.
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344  Figure S10: Continued
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