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Test S1. Geological background of the Zagros fold-and-thrust belt and Ruby Mountains 

metamorphic core complex 

The NW trending Zagros fold-and-thrust belt (hereafter Zagros), built on the original 

passive continental margin of the Arabian plate, forms as a result of the closure of Neo-Tethys 

and convergence between the Arabian and Eurasian plates (Koshnaw et al., 2020a; Koshnaw et 

al., 2020b) (Fig. S1). In the foreland basin of the Zagros, the deposition ages of Neogene strata 

Injan (~12.4-7.75 Ma), Mukdadiya (~7.75-5 Ma), and Bai-Hasan (<5 Ma) formations have been 

well-dated based on the magnetostratigraphy study together with independent ages derived from 

fossils and the youngest detrital zircon U-Pb age constraints (Koshnaw et al., 2020a)(Fig. 2E). In 

respond to the crustal shortening, the pulsed southwestward propagation of the thrust belts in the 

Zagros (e.g., Kirkuk fault) are constrained by the field investigation, petroleum exploration and 

LTT (Koshnaw et al., 2017)(Fig. 2E-2G). Thermochronological and associated thermal history 

modeling studies on basement rocks on the hanging wall of Kirkuk Fault reveal a rapid reverse-

faulting exhumation at 8-7 Ma (Koshnaw et al., 2020b)(Fig. 2G-2H). 

Located in the northeastern Nevada, western America, the NE trending Ruby Mountains 

metamorphic core complex (Ruby Mts.) has played a significant role in Basin and Range 

extension (Fig. S2). The current morphology of these ranges is mainly established due to the 

middle Miocene to present extension which associated with deposition of Miocene-present 

basins (Colgan et al., 2010). In addition to the age constraints on underlying Oligocene basal 

tuffaceous sediments, the depositional age of the Humboldt Fm. (~16 Ma to <8 Ma) is well-

constrained based on the 40Ar/39Ar dating and detrital zircon geochronology (Lund Snee et al., 

2016)(Fig. 2H-2J). Apatite fission track (AFT) and AHe ages from the footwall of the Ruby 

detachment record rapid cooling from >120°C to <40°C during a relatively narrow window in 



the middle Miocene, with best fit t‐T paths clustering around 17–15 Ma (Colgan et al., 2010). 

Thus, the Ruby Mts experience a rapid extensional exhumation at the middle Miocene. Note that 

the low-temperature thermochronology data from the Ruby mountains are interpreted from 

thermal models while the data from the Zagros are weighted mean dates (Fig. 2). 

 

Test S2. Details of the statistical analyses of the Paleogene tectonism in the northern 

Tibetan plateau 

To investigate the Paleogene tectonism in the northern Tibetan plateau, we combined the 

newly constrained syntectonic sedimentary records in and around the Qaidam basin with the 

published Low-temperature thermochronology (LTT) datasets reflecting Paleogene mountain-

building in Northern Tibet. By applying our new approach to debated age model of the Cenozoic 

strata in the Qaidam basin, we have defined the timing of the Paleogene syntectonic sedimentary 

records in and around the Qaidam basin, ranging from 59 Ma to 30 Ma. Additionally. We 

compiled rapid cooling ages of the apatite fission track and (U-Th)/He results from the published 

thermochronology datasets, resulting in a total of 111 ages that represent the timing of Paleogene 

tectonic activity in Northern Tibet (Table S1). 

We recognize that LTT records provide constrains only on the range exhumation, and 

that climate effects can also contribute to rapid exhumation of basement rocks in addition to the 

tectonic activity (Nie et al., 2018; Ye et al., 2022).  However, we do not observe a correlation 

between global climate events (as shown in Fig. 4) and the LTT compilation. Furthermore, it has 

been suggested that erosion has driven exhumation in regions with high precipitation such as the 

Himalayas and southern Pamir, but North Tibet and Central Asia are considered too dry (Jepson 

et al., 2021). Hence, most studies attribute these Paleogene LTT records to the rock uplift of the 



basements in Northern Tibet, rather than climate effects alone (Cao et al., 2015; Cao et al., 2013; 

Clark et al., 2010; He et al., 2017; He et al., 2018; He et al., 2021; He et al., 2022; Jolivet et al., 

2001; Li et al., 2023; Li et al., 2021; Li et al., 2019; Staisch et al., 2020; Wang et al., 2017; 

Zhuang et al., 2018). We thus consider these LTT data to be indicative of the mountain-building 

activity in the Northern Tibet. For instance, thermochronological and associated thermal history 

modeling studies on basement rocks of Altyn Tagh Range (See Section QB1 in Fig. 3A) reveal 

rapid exhumation episodes during two periods: ca. 50-30 Ma and ca. 30-10 Ma (Jolivet et al., 

2001; Zhang et al., 2012). Based on the (U-Th)/He ages derived from apatite samples collected 

along the elevation transects across the Eastern Kunlun Shan, Clark et al. (2010) and Li et al. 

(2021) reveal a rapid cooling event of the basement rock of Eastern Kunlun Shan at ca. 35-25 Ma 

(See Section QB2 in Fig. 3B). This accelerated cooling, according to both Clark et al. (2010) and 

Li et al. (2021) is attributed primarily to rock uplift rather than shifts in climate. The exhumation 

rate experienced a remarkable acceleration at ca. 35-25 Ma, increasing from ca. 0.03 mm/yr to 

0.40-0.50 mm/yr ca. 35-25 Ma. A histogram diagram of the timing of Paleogene tectonic activity 

in the northern Tibetan plateau is then generated using Origin 10.5 software (Fig. 4D), with the 

bin width of 1.5 million years. Note that the low-temperature thermochronology data from the 

Eastern Kunlun Shan, Altyn Tagh Range are interpreted from thermal models (Fig. 2). 

 

Test S3. Growth of Pamir vs. Proto-Paratethys Sea retreat 

Geologists have been intrigued for years by how the Proto-Paratethys Sea retreated from 

Central Asia, as this offers valuable insights into biodiversity and climate change(Blayney et al., 

2019; Bosboom et al., 2017; Bougeois et al., 2018; Dupont-Nivet et al., 2007; Kaya et al., 2019; 

Meijer et al., 2019). While some experts attribute the fluctuations of the Proto-Paratethys Sea to 



tectonic and eustatic factors, as evidenced by several studies (Bosboom et al., 2017; Burtman and 

Molnar, 1993; Dupont-Nivet et al., 2007) (Fig. 4A-4D), the Tarim Sea level fluctuations in the 

Paleogene (Fig. 4C) do not align with eustatic change (Fig. 4A) or with global and regional 

climate change (Fig. S3). Therefore, it is likely that tectonic factor played dominant role in the 

evolution and demise of the Proto-Paratethys Sea during the Paleogene.  

Previous studies have suggested that the uplift and northward indentation of the Pamir 

salient, situated between the Neotethys Ocean and the Tarim Sea during the Paleogene, 

ultimately led to the demise of the Proto-Paratethys Sea (Blayney et al., 2016; Kaya et al., 2019; 

Sun et al., 2017). Although some records of accelerated exhumation and crustal thickening 

during the Paleocene to Eocene in the Pamir and Western Kunlun Shan have been reported 

(Amidon and Hynek, 2010; Chapman et al., 2018; Ducea et al., 2003; Hacker et al., 2005; Li et 

al., 2019), Oligocene-Miocene and Pliocene tectonism evidenced by the LTT are predominant in 

this region (Cao et al., 2015; Chen et al., 2021; Jepson et al., 2021). For instance, 

thermochronological and associated thermal history modeling studies on basement rocks of 

Western Kunlun Shan along section TB1(Fig. 3C) reveal a prominent latest Oligocene-Miocene 

(24-12 Ma and 12-6 Ma) cooling of the exhumation (Li et al., 2019). Meanwhile, 

thermochronological and associated thermal history modeling results on basement rocks of 

Western Kunlun Shan along section TB2 (Fig. 3D) shows a widespread Miocene to Pliocene (ca. 

15-5 Ma) cooling of the exhumation (Cao et al., 2015). Given the relatively limited LTT records 

that reproduce the Paleogene rock uplift history of the Pamir region (Jepson et al., 2021), it 

remains speculative how the Paleogene tectonism in the Pamir region controlled the evolution of 

the Proto-Paratethys Sea.  



On the other hand, recent reports of Paleogene marine records in the Qaidam basin 

indicate that the Proto-Paratethys Sea might have extended further eastward into Northern Tibet 

(Ma et al., 2022)(Fig. 1B). Therefore, the Paleogene intracontinental deformation along North 

Tibet could play a crucial role in the Proto-Paratethys Sea's retreat (Kaya et al., 2019). 

Furthermore, several records of Paleogene tectonism (e.g., LTT) in Northern Tibet have been 

reported (Table S1). By combining the newly constrained syntectonic sedimentary records in and 

around the Qaidam basin with the published LTT datasets reflecting Paleogene mountain-

building in Northern Tibet, we can qualitatively investigate the link between the Paleogene 

tectonism in Northern Tibet and the evolution of the Proto-Paratethys Sea (Fig. S3). We propose 

that renewed acceleration of deformation in Northern Tibet and associated surface elevation 

change promoted the intermittent retreat of the Proto-Paratethys Sea, while intervening 

deceleration of tectonic deformation facilitated Proto-Paratethys Sea incursions. The relatively 

subdued relief in Northern Tibet shortly after the India-Asia collision may have promoted the 1st 

Proto-Paratethys Sea incursion. The renewed acceleration of deformation (and proposed small-

scale surface uplift) from 56 Ma to 48 Ma, at 41-39 Ma and at ca. 36 Ma compensated for the 

general rise of eustatic sea level, resulting in the 1st, 2nd and 3rd regression, respectively. On the 

other hand, when the eustatic sea level remained relatively constant from 48 Ma to 41 Ma and 

from 39 Ma to 36 Ma, lower magnitudes of deformation may have contributed to facilitating the 

2nd and 3rd incursion (Fig. 4D). We note that the 3rd regression of the Proto-Paratethys Sea 

predates the extensive Miocene deformation in the northern Tibetan plateau and Pamir, but 

roughly coincides with the late Eocene to early Oligocene deformation in the northern Tibet (Fig. 

4D). We infer that the late Eocene to early Oligocene tectonics deformation (e.g., uplift and 

basin infilling) in the Pamir and northern Tibetan plateau and the global sea level fall during the 



Eocene-Oligocene Transition contributed to the demise of the Proto-Paratethys Sea from Central 

Asia (Kaya et al., 2019). 

 

Test S4. Cenozoic offset along the Altyn Tagh fault 

The Altyn Tagh fault is a lithospheric sinistral strike-slip fault that extends for over 1600 

km from the Western Kunlun Shan, through the Altyn Tagh Range, and to the northwestern end 

of the Qilian Shan, separating the Tibetan plateau from the Tarim basin (Burchfiel et al., 1989; 

Cheng et al., 2019a; Cheng et al., 2015b; Yin et al., 2002)(Fig. 1). This fault has accommodated 

hundreds of kilometers of the post-collisional convergence between India and Asia through left-

lateral offset(Cheng et al., 2017; Cowgill et al., 2003; Delville et al., 2001; Meyer et al., 1996; 

Yin and Harrison, 2000). The cumulative left-lateral displacement estimates generally range 

from ca. 300 to ca. 500 km(Chen et al., 2002; Cheng et al., 2015a; Cheng et al., 2015b; Cheng et 

al., 2016; Cowgill et al., 2003; Meng et al., 2001; Ritts and Biffi, 2000; Wu et al., 2012; Yue et 

al., 2005; Zhuang et al., 2018), while the proposed Cenozoic initiation of sinistral faulting along 

the Altyn Tagh fault varies from Paleocene-Eocene to Miocene (Cheng et al., 2015a; Cheng et 

al., 2016; Cheng et al., 2019b; Jolivet et al., 2001; Wu et al., 2012; Yin et al., 2008; Yin et al., 

2002; Yue et al., 2001).  

The large-scale displacement along the Altyn Tagh fault during the Paleocene to 

Oligocene suggests that Northern Tibet was situated closer to the SW Tarim basin. However, the 

LTT data shows that exhumation within the Altyn Tagh Range was minor during the Paleocene-

Eocene(Jepson et al., 2021; Jolivet et al., 2001; Wang et al., 2015; Yin et al., 2002). On the other 

hand, the tectonic activity within the Altyn Tagh Range was intensified mountain-building 

during the Oligocene-Miocene(Jolivet et al., 1999; Sobel et al., 2001; Wang et al., 2006; Ye et 



al., 2022; Yu et al., 2019). We thus suggest that the Proto-Paratethys Sea would overcome the 

minor deformation and minor relief in the Altyn Tagh Range, extending further eastward into the 

Northern Tibet during the Paleogene(Ma et al., 2022; Meng and Fang, 2008). 

Figure S1. Geological map of Zagros fold-thrust belt. (A) Index map of the Zagros region, 

showing the location of the studied area. (B) Geological map of Zagros and the surrounding 

regions, modified from Koshnaw et al. (2017). Note the locations of seismic profile are from 

Koshnaw et al. (2017) and Koshnaw et al. (2020b) the LTT results are from Koshnaw et al. 

(2020b). 

 



Figure S2. Geological map of Ruby Mountains metamorphic core complex. (A) Index map of 

the Great Basin region, showing the location of the studied area. (B) Geological map of Ruby 

Mountains, NE Nevada, and the surrounding regions, modified from Lund Snee et al. (2016). 

Note the locations of seismic profile are from Satarugsa and Johnson (2000) and the apatite 

fission track and (U-Th)/He results are from Colgan et al. (2010). 

 



Figure S3. Proto-Paratethys Sea fluctuation vs. regional/global climate change and tectonism. 

(A) Global benthic δ18O stack (Westerhold et al., 2020). (B) Global sea level (Miller et al., 

2020). (C) (Smectite+Illite/Smectite)/Illite ratios in Xining and Qaidam basins, indicating a long-

term decrease of silicate weathering intensity (Fang et al., 2019; Ye et al., 2016). (D) Tectonic 

data are compiled from Kaya et al. (2019) and references therein. (E) Tarim Sea level fluctuation 

(Kaya et al., 2019). (F) Histogram of the timing of tectonic events in the northern Tibet. The 

timing of tectonic activities is from He et al. (2018) and Table S1.  

 

 

Figure S4. Conceptual model of Proto-Paratethys Sea evolution. (A) Paleogene period, (B) 

Present-day. Given the 300-500 km left-slip offset along the Altyn Tagh fault since the 



Eocene(Cheng et al., 2016), the Northern Tibet was situated closer to the SW Tarim basin and 

the Proto-Paratethys Sea might transgress across the Altyn Tagh Range, extending further 

eastward into Northern Tibet during the Paleogene.  

 

 

Table S1. Compilation of published Paleogene tectonic events in the northern Tibetan plateau.  
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