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Test S1. Geological background of the Zagros fold-and-thrust belt and Ruby Mountains
metamorphic core complex

The NW trending Zagros fold-and-thrust belt (hereafter Zagros), built on the original
passive continental margin of the Arabian plate, forms as a result of the closure of Neo-Tethys
and convergence between the Arabian and Eurasian plates (Koshnaw et al., 2020a; Koshnaw et
al., 2020b) (Fig. S1). In the foreland basin of the Zagros, the deposition ages of Neogene strata
Injan (~12.4-7.75 Ma), Mukdadiya (~7.75-5 Ma), and Bai-Hasan (<5 Ma) formations have been
well-dated based on the magnetostratigraphy study together with independent ages derived from
fossils and the youngest detrital zircon U-Pb age constraints (Koshnaw et al., 2020a)(Fig. 2E). In
respond to the crustal shortening, the pulsed southwestward propagation of the thrust belts in the
Zagros (e.g., Kirkuk fault) are constrained by the field investigation, petroleum exploration and
LTT (Koshnaw et al., 2017)(Fig. 2E-2G). Thermochronological and associated thermal history
modeling studies on basement rocks on the hanging wall of Kirkuk Fault reveal a rapid reverse-
faulting exhumation at 8-7 Ma (Koshnaw et al., 2020b)(Fig. 2G-2H).

Located in the northeastern Nevada, western America, the NE trending Ruby Mountains
metamorphic core complex (Ruby Mts.) has played a significant role in Basin and Range
extension (Fig. S2). The current morphology of these ranges is mainly established due to the
middle Miocene to present extension which associated with deposition of Miocene-present
basins (Colgan et al., 2010). In addition to the age constraints on underlying Oligocene basal
tuffaceous sediments, the depositional age of the Humboldt Fm. (~16 Ma to <8 Ma) is well-
constrained based on the *°Ar/*?Ar dating and detrital zircon geochronology (Lund Snee et al.,
2016)(Fig. 2H-2J). Apatite fission track (AFT) and AHe ages from the footwall of the Ruby

detachment record rapid cooling from >120°C to <40°C during a relatively narrow window in



the middle Miocene, with best fit t-T paths clustering around 17-15 Ma (Colgan et al., 2010).

Thus, the Ruby Mts experience a rapid extensional exhumation at the middle Miocene. Note that
the low-temperature thermochronology data from the Ruby mountains are interpreted from

thermal models while the data from the Zagros are weighted mean dates (Fig. 2).

Test S2. Details of the statistical analyses of the Paleogene tectonism in the northern
Tibetan plateau

To investigate the Paleogene tectonism in the northern Tibetan plateau, we combined the
newly constrained syntectonic sedimentary records in and around the Qaidam basin with the
published Low-temperature thermochronology (LTT) datasets reflecting Paleogene mountain-
building in Northern Tibet. By applying our new approach to debated age model of the Cenozoic
strata in the Qaidam basin, we have defined the timing of the Paleogene syntectonic sedimentary
records in and around the Qaidam basin, ranging from 59 Ma to 30 Ma. Additionally. We
compiled rapid cooling ages of the apatite fission track and (U-Th)/He results from the published
thermochronology datasets, resulting in a total of 111 ages that represent the timing of Paleogene
tectonic activity in Northern Tibet (Table S1).

We recognize that LTT records provide constrains only on the range exhumation, and
that climate effects can also contribute to rapid exhumation of basement rocks in addition to the
tectonic activity (Nie et al., 2018; Ye et al., 2022). However, we do not observe a correlation
between global climate events (as shown in Fig. 4) and the LTT compilation. Furthermore, it has
been suggested that erosion has driven exhumation in regions with high precipitation such as the
Himalayas and southern Pamir, but North Tibet and Central Asia are considered too dry (Jepson

et al., 2021). Hence, most studies attribute these Paleogene LTT records to the rock uplift of the



basements in Northern Tibet, rather than climate effects alone (Cao et al., 2015; Cao et al., 2013;
Clark et al., 2010; He et al., 2017; He et al., 2018; He et al., 2021; He et al., 2022; Jolivet et al.,
2001; Li et al., 2023; Li et al., 2021; Li et al., 2019; Staisch et al., 2020; Wang et al., 2017,
Zhuang et al., 2018). We thus consider these LTT data to be indicative of the mountain-building
activity in the Northern Tibet. For instance, thermochronological and associated thermal history
modeling studies on basement rocks of Altyn Tagh Range (See Section QB1 in Fig. 3A) reveal
rapid exhumation episodes during two periods: ca. 50-30 Ma and ca. 30-10 Ma (Jolivet et al.,
2001; Zhang et al., 2012). Based on the (U-Th)/He ages derived from apatite samples collected
along the elevation transects across the Eastern Kunlun Shan, Clark et al. (2010) and Li et al.
(2021) reveal a rapid cooling event of the basement rock of Eastern Kunlun Shan at ca. 35-25 Ma
(See Section QB2 in Fig. 3B). This accelerated cooling, according to both Clark et al. (2010) and
Liet al. (2021) is attributed primarily to rock uplift rather than shifts in climate. The exhumation
rate experienced a remarkable acceleration at ca. 35-25 Ma, increasing from ca. 0.03 mm/yr to
0.40-0.50 mm/yr ca. 35-25 Ma. A histogram diagram of the timing of Paleogene tectonic activity
in the northern Tibetan plateau is then generated using Origin 10.5 software (Fig. 4D), with the
bin width of 1.5 million years. Note that the low-temperature thermochronology data from the

Eastern Kunlun Shan, Altyn Tagh Range are interpreted from thermal models (Fig. 2).

Test S3. Growth of Pamir vs. Proto-Paratethys Sea retreat

Geologists have been intrigued for years by how the Proto-Paratethys Sea retreated from
Central Asia, as this offers valuable insights into biodiversity and climate change(Blayney et al.,
2019; Bosboom et al., 2017; Bougeois et al., 2018; Dupont-Nivet et al., 2007; Kaya et al., 2019;

Meijer et al., 2019). While some experts attribute the fluctuations of the Proto-Paratethys Sea to



tectonic and eustatic factors, as evidenced by several studies (Bosboom et al., 2017; Burtman and
Molnar, 1993; Dupont-Nivet et al., 2007) (Fig. 4A-4D), the Tarim Sea level fluctuations in the
Paleogene (Fig. 4C) do not align with eustatic change (Fig. 4A) or with global and regional
climate change (Fig. S3). Therefore, it is likely that tectonic factor played dominant role in the
evolution and demise of the Proto-Paratethys Sea during the Paleogene.

Previous studies have suggested that the uplift and northward indentation of the Pamir
salient, situated between the Neotethys Ocean and the Tarim Sea during the Paleogene,
ultimately led to the demise of the Proto-Paratethys Sea (Blayney et al., 2016; Kaya et al., 2019;
Sun et al., 2017). Although some records of accelerated exhumation and crustal thickening
during the Paleocene to Eocene in the Pamir and Western Kunlun Shan have been reported
(Amidon and Hynek, 2010; Chapman et al., 2018; Ducea et al., 2003; Hacker et al., 2005; Li et
al., 2019), Oligocene-Miocene and Pliocene tectonism evidenced by the LTT are predominant in
this region (Cao et al., 2015; Chen et al., 2021; Jepson et al., 2021). For instance,
thermochronological and associated thermal history modeling studies on basement rocks of
Western Kunlun Shan along section TB1(Fig. 3C) reveal a prominent latest Oligocene-Miocene
(24-12 Ma and 12-6 Ma) cooling of the exhumation (Li et al., 2019). Meanwhile,
thermochronological and associated thermal history modeling results on basement rocks of
Western Kunlun Shan along section TB2 (Fig. 3D) shows a widespread Miocene to Pliocene (ca.
15-5 Ma) cooling of the exhumation (Cao et al., 2015). Given the relatively limited LTT records
that reproduce the Paleogene rock uplift history of the Pamir region (Jepson et al., 2021), it
remains speculative how the Paleogene tectonism in the Pamir region controlled the evolution of

the Proto-Paratethys Sea.



On the other hand, recent reports of Paleogene marine records in the Qaidam basin
indicate that the Proto-Paratethys Sea might have extended further eastward into Northern Tibet
(Ma et al., 2022)(Fig. 1B). Therefore, the Paleogene intracontinental deformation along North
Tibet could play a crucial role in the Proto-Paratethys Sea's retreat (Kaya et al., 2019).
Furthermore, several records of Paleogene tectonism (e.g., LTT) in Northern Tibet have been
reported (Table S1). By combining the newly constrained syntectonic sedimentary records in and
around the Qaidam basin with the published LTT datasets reflecting Paleogene mountain-
building in Northern Tibet, we can qualitatively investigate the link between the Paleogene
tectonism in Northern Tibet and the evolution of the Proto-Paratethys Sea (Fig. S3). We propose
that renewed acceleration of deformation in Northern Tibet and associated surface elevation
change promoted the intermittent retreat of the Proto-Paratethys Sea, while intervening
deceleration of tectonic deformation facilitated Proto-Paratethys Sea incursions. The relatively
subdued relief in Northern Tibet shortly after the India-Asia collision may have promoted the 1%
Proto-Paratethys Sea incursion. The renewed acceleration of deformation (and proposed small-
scale surface uplift) from 56 Ma to 48 Ma, at 41-39 Ma and at ca. 36 Ma compensated for the
general rise of eustatic sea level, resulting in the 1, 2" and 3™ regression, respectively. On the
other hand, when the eustatic sea level remained relatively constant from 48 Ma to 41 Ma and
from 39 Ma to 36 Ma, lower magnitudes of deformation may have contributed to facilitating the
2™ and 3" incursion (Fig. 4D). We note that the 3™ regression of the Proto-Paratethys Sea
predates the extensive Miocene deformation in the northern Tibetan plateau and Pamir, but
roughly coincides with the late Eocene to early Oligocene deformation in the northern Tibet (Fig.
4D). We infer that the late Eocene to early Oligocene tectonics deformation (e.g., uplift and

basin infilling) in the Pamir and northern Tibetan plateau and the global sea level fall during the



Eocene-Oligocene Transition contributed to the demise of the Proto-Paratethys Sea from Central

Asia (Kaya et al., 2019).

Test S4. Cenozoic offset along the Altyn Tagh fault

The Altyn Tagh fault is a lithospheric sinistral strike-slip fault that extends for over 1600
km from the Western Kunlun Shan, through the Altyn Tagh Range, and to the northwestern end
of the Qilian Shan, separating the Tibetan plateau from the Tarim basin (Burchfiel et al., 1989;
Cheng et al., 2019a; Cheng et al., 2015b; Yin et al., 2002)(Fig. 1). This fault has accommodated
hundreds of kilometers of the post-collisional convergence between India and Asia through left-
lateral offset(Cheng et al., 2017; Cowgill et al., 2003; Delville et al., 2001; Meyer et al., 1996;
Yin and Harrison, 2000). The cumulative left-lateral displacement estimates generally range
from ca. 300 to ca. 500 km(Chen et al., 2002; Cheng et al., 2015a; Cheng et al., 2015b; Cheng et
al., 2016; Cowgill et al., 2003; Meng et al., 2001; Ritts and Biffi, 2000; Wu et al., 2012; Yue et
al., 2005; Zhuang et al., 2018), while the proposed Cenozoic initiation of sinistral faulting along
the Altyn Tagh fault varies from Paleocene-Eocene to Miocene (Cheng et al., 2015a; Cheng et
al., 2016; Cheng et al., 2019b; Jolivet et al., 2001; Wu et al., 2012; Yin et al., 2008; Yin et al.,
2002; Yue et al., 2001).

The large-scale displacement along the Altyn Tagh fault during the Paleocene to
Oligocene suggests that Northern Tibet was situated closer to the SW Tarim basin. However, the
LTT data shows that exhumation within the Altyn Tagh Range was minor during the Paleocene-
Eocene(Jepson et al., 2021; Jolivet et al., 2001; Wang et al., 2015; Yin et al., 2002). On the other
hand, the tectonic activity within the Altyn Tagh Range was intensified mountain-building

during the Oligocene-Miocene(Jolivet et al., 1999; Sobel et al., 2001; Wang et al., 2006; Ye et



al., 2022; Yu et al., 2019). We thus suggest that the Proto-Paratethys Sea would overcome the
minor deformation and minor relief in the Altyn Tagh Range, extending further eastward into the
Northern Tibet during the Paleogene(Ma et al., 2022; Meng and Fang, 2008).

Figure S1. Geological map of Zagros fold-thrust belt. (A) Index map of the Zagros region,
showing the location of the studied area. (B) Geological map of Zagros and the surrounding
regions, modified from Koshnaw et al. (2017). Note the locations of seismic profile are from
Koshnaw et al. (2017) and Koshnaw et al. (2020b) the LTT results are from Koshnaw et al.

(2020b).
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Figure S2. Geological map of Ruby Mountains metamorphic core complex. (A) Index map of
the Great Basin region, showing the location of the studied area. (B) Geological map of Ruby
Mountains, NE Nevada, and the surrounding regions, modified from Lund Snee et al. (2016).
Note the locations of seismic profile are from Satarugsa and Johnson (2000) and the apatite

fission track and (U-Th)/He results are from Colgan et al. (2010).
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Figure S3. Proto-Paratethys Sea fluctuation vs. regional/global climate change and tectonism.
(A) Global benthic §'30 stack (Westerhold et al., 2020). (B) Global sea level (Miller et al.,
2020). (C) (Smectite+Illite/Smectite)/Illite ratios in Xining and Qaidam basins, indicating a long-
term decrease of silicate weathering intensity (Fang et al., 2019; Ye et al., 2016). (D) Tectonic
data are compiled from Kaya et al. (2019) and references therein. (E) Tarim Sea level fluctuation
(Kaya et al., 2019). (F) Histogram of the timing of tectonic events in the northern Tibet. The

timing of tectonic activities is from He et al. (2018) and Table S1.
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Figure S4. Conceptual model of Proto-Paratethys Sea evolution. (A) Paleogene period, (B)

Present-day. Given the 300-500 km left-slip offset along the Altyn Tagh fault since the



Eocene(Cheng et al., 2016), the Northern Tibet was situated closer to the SW Tarim basin and
the Proto-Paratethys Sea might transgress across the Altyn Tagh Range, extending further

eastward into Northern Tibet during the Paleogene.
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Table S1. Compilation of published Paleogene tectonic events in the northern Tibetan plateau.
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