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Table 1: Analytical Summary

MDA Candidates1 Modes
Sample N n youngest date youngest population principal 2 3 4
DDS 138 129 233.1 ± 10.3 Ma 268.6 ± 4.5 Ma (n=2;

MSWD=0.02)
617.8 Ma 1048.4 Ma 365.3 Ma 1371.4 Ma

DH1 143 123 221.5 ± 8 Ma 228.3 ± 4.6 Ma (n=4;
MSWD=0.61)

603.1 Ma 389.7 Ma 988.2 Ma 1157.9 Ma

DH2 126 106 221 ± 15.1 Ma 225.4 ± 4.1 Ma (n=6;
MSWD=0.11)

589.3 Ma 423.2 Ma 1029.6 Ma 968.9 Ma

RCR 145 133 300.2 ± 6.8 Ma 351.3 ± 6.7 Ma (n=8;
MSWD=0.91)

604 Ma 1038.3 Ma 391 Ma 1308.8 Ma

ROY 132 111 220.2 ± 4.6 Ma 229.7 ± 4.5 Ma (n=14;
MSWD=0.59)

642.2 Ma 233.2 Ma 597.6 Ma 1102.3 Ma

MDA = maximum depositional age; N = total number of analyses; n = number of concordant analyses
1 uncertanties reported at 95% confidence

Analyst’s Comments
Of the six samples submitted for detrital zircon analysis, one (GS.1) did not yield any zircons from

crushing and mineral separation procedures. Mineral separates from DH.1 and RCR contained significant
quantities of diluting apatite, and thus all mounted zircon grains were analyzed on the first set of mounts
that were made, thus an additional mount was made for these samples. Samples DDS, DH.2, and ROY have
many grains still unanalyzed in mounts.

Samples DH.1, DH.2 and ROY produced Late Triassic maximum depositional ages based upon significant
numbers of young grains. A single youngest grain from sample DDS also produced a Late Triassic maximum
depositional age. By contrast, the youngest detrital zircons in samples RCR are Carboniferous in age.
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Analytical Methods
The analytical methods summarized below apply to samples listed in Table 1.

Sample Preparation
An abundant population of relatively small, (approximately 50-200 micron in long dimension), angular to

rounded zircon crystals was separated from the provided hand samples by conventional density and magnetic
methods. The entire zircon separate was placed in a muffle furnace at 900°C for 60 hours in quartz beakers
to anneal minor radiation damage; annealing enhances cathodoluminescence emission (Nasdala et al., 2002),
promotes more reproducible inter-element fractionation during laser ablation inductively coupled plasma
mass spectrometry (LA-ICPMS) (Allen and Campbell, 2012), and prepares the crystals for any subsequent
chemical abrasion (Mattinson, 2005). Following annealing, individual grains for each sample were sieved into
three size fractions (<70 micron, 70-150 micron and >150 micron) and mounted with other samples by size
fraction, using 0.5 mm aperture strips of double-sided tape, secured in epoxy. Grain mounts were ground to
expose the interiors of zircon crystals, polished with 0.3 micron alumina, and imaged by cathodoluminence
(CL) on a scanning electron microscope. Laser spots were placed on random swaths of grains from multiple
rows for each size fraction, proportional to the mass fraction of zircons from each size, typically 4 grains in
the >150 micron fraction, 28 grains in the 70-150 micron fraction and 112 in <70 micron fraction. Laser
spots were placed on the most volumetrically dominant growth domains for each grain, in locations devoid
of apparent cracks and inclusions as interpreted from CL zonation patterns and transmitted/reflected light
imagery.

LA-ICPMS analysis
LA-ICPMS analysis utilized a ThermoFisher iCAP RQ quadrupole inductively coupled plasma mass

spectrometer coupled to a Teledyne Analyte Excite+ 193 nm excimer laser ablation system. In-house ana-
lytical protocols, standard materials, and data reduction software were used for acquisition and calibration
of U and-Pb isotope ratios dates and a suite of high field strength elements (HFSE), and rare earth elements
(REE), and titanium elemental concentrations. Zircon grains were ablated with a laser spot diameter of 20
µm using fluence and pulse rates of ~2.5 J/cm2 and 5 Hz, during a 45 second analysis (15 sec gas blank, 20 sec
ablation, and 10 sec washout) that excavated a pit ~7 µm deep. Ablated material was carried by a combined
1.2 L/min He gas stream from the two-volume ablation cell to the nebulizer flow of the plasma. Quadrupole
dwell times were 5 ms for Si and Zr, 200 ms for 49Ti and 207Pb, 80 ms for 206Pb, 40 ms for 202Hg, 204Pb,
208Pb, 232Th, and 238U and 10 ms for all other HFSE and REE; total sweep duration is 950 ms. Background
count rates for each analyte were obtained prior to each spot analysis and subtracted from the raw count
rate for each analyte. For concentration calculations, background-subtracted count rates for analytes were
internally normalized to 29Si and calibrated with respect to NIST SRM-610 and -612 glasses as the primary
concentration standards. Analyses compromised by glass or mineral inclusions were identified based on se-
lected elemental signal excursions, for example Ti and P, and associated sweeps were generally discarded.
U-Pb dates from these analyses are considered valid if the U-Pb ratios appear to have been unaffected by the
inclusions. Signals at mass 204 were normally indistinguishable from zero following subtraction of mercury
backgrounds measured during the gas blank (<100 cps 202Hg), and thus dates are reported without common
Pb correction. Rare sweeps or whole analyses with mass 204 signals above background were rejected.

U-Pb and Pb-Pb dates are corrected for instrumental fractionation using background-subtracted ratios
and are calibrated with respect to interspersed measurements of zircon standards and reference materials.
The primary zircon standard Plešovice zircon (Sláma et al., 2008) is used to monitor time-dependent instru-
mental fractionation based on two analyses for every 14 analyses of unknown zircon. A polynomial fit to the
primary standard analyses versus time yields each spot-specific fractionation factor and its standard devia-
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tion. A secondary bias correction is subsequently applied to unknowns on the basis of the residual age bias as
a function of radiogenic Pb count rate in standard materials including Seiland, Zirconia, and Plešovice, FC1
and 91500. Error contributions from counting statistics and background subtraction are propagated into the
analytical uncertainties for isotope ratios and U-Pb dates. Following the recommendations of Horstwood et
al. (2016) the uncertainties on each date are reported with and without systematic uncertainties from the
primary reference material calibration. Additional details of methodology and reproducibility are reported
in Rivera et al. (2013) and Macdonald et al. (2018).

Calculations used in analytical summary
The independent decay chains of 238U to 206Pb and 235U to 207Pb provide a closed-system, or concordance,

check via agreement between dates calculated from each U-Pb decay scheme (Wetherill, 1956; Tera and
Wasserburg, 1972; Schoene, 2014). Concordance is a primary criteria for addressing the interpretive age
accuracy of an analysis, and can be calculated via a number of metrics (e.g., Ludwig, 1998; Vermeesch,
2020), but is most often expressed as the relative difference between the 207Pb/206Pb and 206Pb/238U ratios
(or dates), or the 207Pb/235U and 206Pb/238U ratios (or dates). While 207Pb/206Pb - 206Pb/238U concordancy
is robust for Precambrian zircon dates, it deteriorates for Phanerozoic dates due to the increased linearity of
the Phanerozioc concordia curve and corresponding highly oblique intersection of discordia lines. By contrast,
207Pb/235U - 206Pb/238U concordancy is robust regardless of absolute age. The total number of analyses (N)
and the number of concordant analyses (n) are listed in Table 1. We define concordant analyses (n) as those
with 206Pb/238U and 207Pb/235U dates that are within 5% of agreement, assessed within the 95% confidence
interval of the propagated error in discordance (Gibson et al., 2021). Concordant and discordant analyses for
each sample are plotted in the Wetherill and Tera-Wasserburg concordia plots section of this report. Analyses
for zircon standards in each experiment (analytical session) are similarly plotted on Wetherill concordia plots
at the end of this report.

A maximum depositional age (MDA) for sedimentary rocks may be assessed using a variety of methods
(Vermeesch, 2021). The two MDA candidates presented in Table 1 are the youngest single concordant
analysis (youngest date) and its 2-sigma uncertainty, and the weighted mean of the youngest group of dates
(n > 2) that together yield an MSWD <1 (Wendt and Carl, 1991), and full 95% confidence interval for the
weighted mean of this population. This approach is based on the recommendations of Herriott et al. (2019)
established by comparing MDA interpretations from high n LA-ICPMS datasets to MDA interpretations
obtained from more accurate and precise CA-IDTIMS method on the same zircon grains. However, it is
important to consider that each of these MDA candidates, or an MDA obtained from another approach,
should be assessed on a case-by-case basis and grounded with geological context.

Kernel density estimators (KDEs) for each sample were constructed using functions from the IsoplotR
package, employing an adaptive bandwidth (Vermeesch, 2018). The four most prominent modes in the KDE
for each sample are listed in Table 1.
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Wetherill concordia plots for standards (by analytical session)
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