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Supplemental Text S1: Analytical methods
Zircon U-Pb dating and trace element geochemistry

Zircon grains were separated from the samples using conventional crushing, heavy liquid, and
magnetic separation techniques before the separates were purified by handpicking under a
binocular microscope at the Langfang Yantuo Geological Service, Hebei Province, China. The
handpicked zircons were mounted in epoxy resin and polished to expose grain centers. Using a
combination of cathodoluminescence (CL) and optical microscopy, the clearest, least fractured
rims of the zircon crystals were selected as suitable targets for laser ablation analyses. Agilent
7500a ICP-MS equipped with a 193 nm laser, housed at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of Geosciences (Wuhan), was used to
measure the U-Pb age of zircons. Zircon 91500 was used as external standard for age calibration
and the NIST SRM 610 silicate glass was applied for the instrument optimization. The crater
diameter was 30 pum during the analyses. The ICPMSDataCal and Isoplot programs were used
for data reduction. Correction for common Pb was made following Anderson (2002). Errors on
individual analyses by LA-ICP-MS are quoted at the 1o level, while errors on pooled ages are
quoted at the 95% (20) confidence level. Zircon trace-element analysis are synchronous with U-
Pb dating. The NIST 612 was conducted as standard sample to correct for mass bias drift. Silicon
concentration was applied for elemental calibration. Accuracy for selected elements is within
10%.

Whole-rock geochemistry

Samples for whole-rock analysis were cleaned, and altered material removed, prior to crushing in
an agate mill to pass ~200 mesh. The whole-rock major and trace element abundances were
obtained at the State Key Laboratory of Geological Processes and Mineral Resources, China
University of Geosciences, Wuhan, China. Major elements were analyzed by X-ray fluorescence
(XRF) using a Rigaku RIX 2100 spectrometer. Trace elements were determined by ICP-MS
after acid digestion of samples in Teflon bombs using an Agilent 7500a equipped with a shield
torch. Analytical uncertainties are between 1% and 3%, and analyses of the BHVO-1 (basalt),
BCR-2 (basalt), and AGV-1 (andesite) standards indicate that the analytical precision for major
elements was better than 5% and for trace elements generally better than 10%.

Whole-rock Sr and Nd isotopes

The whole-rock Nd isotope of samples was analyzed in the state key laboratory Geological
Process and Mineral Resources, School of Earth Sciences and Mineral Resources, China
University of Geosciences Beijing (CUGB). Sample powders (50-100 mg) were dissolved in
HF-HNO3-HCI-HCIO4 completely. Nd was purified by LN resin and HCI, then after the AG50-
X12 resin. The Nd isotope was corrected by "Nd/'Nd = 0.7219. The purified Nd was
dissolved in 3% HNO; for isotope analysis on the TIMS. The geology standard of BHVO-2 and
GSP-2 of "Nd/'"*Nd is = 0.512994 + 9 (20) and 0.511335 £ 11 (20), respectively, for this
study. Alfa Nd (An ultrapure single elemental standard solution from the Alfa Aesar A Johnson
Mattey Company of the USA) was analyzed as the in—house reference. The Alfa Nd for this
study is Alfa Nd **Nd/"*Nd = 0.512427 + 10 (20), which is similar to the long—term measured
values in this clean lab for it is Alfa Nd **Nd/!*Nd = 0.512423 + 24 (26, n = 58).

Zircon Lu-Hf isotope
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In-situ zircon Hf isotope analyses were undertaken by MC-ICP-MS (Neptune Plus) equipped
with a 193 nm ArF excimer laser ablation system at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of Geosciences. A simple Y junction
downstream from the sample cell was used to add small amounts of nitrogen (4 ml min—1) to the
argon gas; the addition of nitrogen in combination with the use of a newly designed X skimmer
and Jet sample cones within the Neptune Plus instrument improved the signal intensities of Hf,
Yb, and Lu by factors of 5.3, 4.0, and 2.4, respectively, when compared with standard
arrangements. All data were acquired using a single spot ablation mode and a 44 um spot size.
Each measurement consisted of 20 s of background signal acquisition followed by 50 s of
ablation signal acquisition. Details of the operating conditions for the laser ablation system and
the MC-ICP-MS instrument, and details of the analytical methods used during this study, are
given in Hu et al. (2012).

Supplemental Text S2. Data filtered methods
Evaluating of alteration affect

Generally, magmatic rocks with relatively high loss-on-ignition (LOI) values (>5%) imply that
they may have undergone various processes of hydrothermal alteration. The alteration processes
would alter the compositions of major and trace elements. In the cases, we select some magmatic
rocks (most are basaltic volcanic rocks) to evaluate the effect of hydrothermal alteration.

In the figure 1a, some samples of andesite (samples: TS35-4-TS35-7; WT809-WT825) locate or
close to the alteration areas. In the figure 1b-1g, TS35-4-TS35-7 samples show obviously
covariant variations that demonstrates these samples experienced later hydrothermal alteration.
Whereas, WT809-WT825 samples exhibit few correlations that implies they were not affected
by post-magmatic alteration (Fig. 1b-g). In the figure 1h, most of selected samples (BG7-BG9;
H-801-1-H-nx-4; WXT721-P201; H-009-1-H-309-15) plot in or close to the alteration areas.
However, most of these samples (except BG7-BG9) present weak correlations between highly
mobile elements and LOI (Figure. 1i-n), which suggests that they not underwent significant
alteration processes. In the figure 1o, basaltic volcanic rocks (samples: KK1-10-QB-2C; 04X1J-
327-04XJ-340; 06XJ112-1-06XJ114-2) locate in the alteration areas. A few samples (04XJ-327-
04XJ-340) exhibit strong correlations between highly mobile elements and LOI that indicates
that they were affected by alteration, whereas most of samples have not obvious alteration
features (Figure. 1p-1u).

Therefore, we exclude probable alteration samples (i.e., TS35-4-TS35-7; BG7-BGS8; 04XJ329;
04XJ340) in this study.

Filtration of highly fractionated magmatic rocks

Highly fractionated magmatic rocks (SiO2>70 wt %) generally experience complex processes of
magmatic evolution, which result in their variable compositions of major and trace elements and
controversial petrogenetic mechanism (Wu et al., 2017). In this case, we not use them to discuss
the magmatic evolution of the North Yili belt in this study.

Many pioneer works have recognized some distinct characteristic for identifying highly
fractionated magmatic rocks (e.g., Nb/Ta<<5, Ballouard et al., 2016; Zr/Hf: <26 and >46,
Y/Ho: <24 and >34, Bau, 1996). In the Zr/Hf vs. Y/Ho diagram, many 380-350 Ma and 300-
260 Ma magmatic rocks show relatively low Zr/Hf ratios, which indicated they underwent highly
fractionated magmatic processes (Fig. 2a-c). Also, some 320-300 Ma and 300-260 Ma magmatic
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rocks exhibit extremely low Nb/Ta ratios suggest that they experienced similar highly
fractionated evolution (Fig. 2d-f). As above-mentioned evidences, we recognize some highly
fractionated magmatic rocks and preclude them for this discussion (excluded samples in
supplementary Table S6).

Figure S1. Photomicrographs of the intrusive lithologies of five plutons in the northern Yili
block. All the photomicrographs are under crossed nicols. Guozigou pluton: (a) monzogranite
showing a medium to fine grained texture and composed mostly of K-feldspar, plagioclase,
quartz and biotite; (b) monzogranite locally showing quartz irregularly distributed in the
plagioclase; Wulanbulark pluton: (c¢) quartz diorite composed of K-feldspar, plagioclase, quartz
and amphibole; (d) granite porphyry showing a porphyritic texture; Kekeqiaoke-Kenxia pluton:
(e) K-feldspar granite showing a medium to coarse grained texture with a characteristic K-
feldspar Carlsbad twin; (f, g) monzogranite composed mainly of K-feldspar, plagioclase and
quartz, and a related variation of the K-feldspar component; Haxilegen pluton: (h, 1) biotite with
a dark yellow interference color distributed between plagioclase and quartz, and showing
variable grain size and abundance; (j) granodiorite containing plagioclase, quartz and biotite with
local plagioclase showing a characteristic oscillatory zoning; Wulangdaban-Tetiedaban pluton:
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(k) granite porphyry showing a porphyritic texture with phenocrysts of plagioclase, quartz and
amphibole; (1) albite porphyry exhibiting albite and minor quartz phenocrysts in the matrix with
an obvious albite twin.
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Figure S2. (a, h, o) Alteration box plot, after Large et al. (2001). (b-g, i-n, p-u) Variation
diagrams of highly mobile elements with loss-on-ignition (LOI) for magmatic rock samples in
the north Yili Block. The data of these samples are from Supplementary Table S6. Al (Ishikawa
Alteration Index) = 100 x (K20 + MgO) / (KO + MgO + Na,O + CaO), CCP (Chlorite-
carbonate-pyrite index) = 100 x (MgO + FeO") / (MgO + FeO! + Na,O + K,0).
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Figure S3. (a-c) Zr/Hf vs. Y/Ho diagram (modified after Bau, 1996), CHARAC (CHArge-and-
Radius-Controlled) field represents common magmatic rocks crystallized from pure silica melt
systems. (d-f) Nb vs. Nb/Ta diagram (modified after Ballouard et al., 2016), Nb/Ta<<5 areas
represent the feature of highly fractionated magmatic rocks.
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