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For classi�cation, we coupled XRD and XRF. Our units �t the de�nition “volcanic ash fall” by Hong et al. (2019), 
consisting of 70–80% glass, 20–25% phenocrysts, and minor amorphous clays. Based on XRD results, the presence 
of quartz crystals and more signi�cant amounts of plagioclase (10–20%) as opposed to orthoclase (0.8–4.5%), 
coupled with XRF-based IUGS classi�cation of volcanic rocks (Fig. 3A), all four samples classify as dacitic.  These 
dacites are borderline tholeiitic to medium-K calc-alkaline (Peccerillo and Taylor, 1976) (Fig. 3B). In detail, MAZ1 
and MAZ4 are slightly more primitive than the remarkably similar MAZ2 and MAZ3 (Fig. 3 C,D). We interpret the 
moderate levels of an unidenti�ed amorphous fraction (39–53%) coupled with high SiO2 values as glass instead 
of meta-Kaolin. Although we can roughly identify these as crystal tu�s due to the age and levels of smectite 
present (13-20%), we prefer to identify them as tu�aceous bentonites. Each ash bed typically weathers into haystacks 
with popcorn weathering, jigsaw puzzle clay fractures, and nodular masses (“eggs”). However, with closer examination, 
we found signi�cant amounts of Mg (mixing of brackish waters), mineral content (anhedral biotite and euhedral 
zircon), whole-rock abundances of Al, Fe, Mg, K, and quantities of Ti vary inversely with Si, along with variation in 
internal layering, layer charge, variable clay ratios, and wet color modi�cation; we can infer that with further 
devitri�cation MAZ1–4 would be classi�ed as K-bentonites (Hu�, 2016).



 

 

LA-ICP-MS methods 

Zircon grains were separated from rocks using standard crushing, heavy-liquid, and magnetic 

separation techniques. Only sharply faceted grains were picked and annealed at 900oC for 60 

hours in a muffle furnace. Grains were mounted in epoxy and polished until their centers were 

exposed. One sample (COI-2) has too small grains for mounting and polishing. 

Cathodoluminescence (CL) images were obtained from a Hitachi S-3400N-II scanning electron 

microscope. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analyses 

on zircon grains were performed on an iCAP RQ Quadrupole ICP-MS and Teledyne Photon 

Machines Analyte Excite+ 193 nm excimer laser ablation system with HelEx II Active two-

volume ablation cell. In-house analytical protocols, standard materials, and data reduction 

software were used for the acquisition and calibration of U-Pb dates and a suite of high-field 

strength elements (HFSE) and rare earth elements (REE). Zircon grains were ablated with a laser 

spot of 20 µm wide using fluence and pulse rates of 2.5 J/cm2 and 10 Hz, respectively, during a 

25-second analysis (15-sec gas blank, 10-sec ablation) that excavated a pit ~7 µm deep. Ablated 

material was carried by a 0.25 L/min He gas stream in the inner cell and a 1.25 L/min He gas 

stream in the outer cell. Dwell times and other instrumental data are given in Table S1, which 

accompanies the sample data tables. Background count rates for each analyte were obtained 

before each spot analysis and subtracted from the raw count rate for each analyte. Ablation pits 

that appear to have intersected glass or mineral inclusions were identified based on Ti, and P. U-

Pb dates from these analyses are considered valid if the U-Pb ratios appear to have been 

unaffected by the inclusions. Analyses that appear contaminated by common Pb were rejected 

based on mass 204 being above baseline. For concentration calculations, background-subtracted 

count rates for each analyte were internally normalized to 29Si and calibrated concerning NIST 



 

 

SRM-610 and -612 glasses as the primary standards. The Ti-in-zircon thermometer calculated 

the temperature (Watson et al., 2006). Because there are no constraints on the activity of TiO2, an 

average value in crustal rocks of 0.6 was used. 

Data were obtained in three experiments in May 2022. For U-Pb and 207Pb/206Pb dates, 

instrumental fractionation of the background-subtracted ratios was corrected, and dates were 

calibrated concerning interspersed measurements of zircon standards and reference materials. 

The primary standard Plešovice zircon (Sláma et al., 2008) was used to monitor time-dependent 

instrumental fractionation based on two analyses for every 12 analyses of unknown zircon. A 

secondary correction to the 206Pb/238U dates was made based on results from the zircon standards 

Seiland (531 Ma, Kuiper et al., 2022) and 91500 (1065 Ma, Wiedenbeck et al., 1995), which 

were treated as unknowns and measured once for every 12 analyses of unknown zircon. These 

results (Table S3) showed a linear age bias of several percent related to the 206Pb count rate. The 

secondary correction is thought to mitigate matrix-dependent variations due to contrasting 

compositions and ablation characteristics between the Plešovice zircon and other standards (and 

unknowns).  

Radiogenic isotope ratio and age error propagation for all analyses include uncertainty 

contributions from counting statistics and background subtraction. Errors without and with the 

standard calibration uncertainty are shown in Table S2. This uncertainty is the local standard 

deviation of the polynomial fit to the interspersed primary standard measurements versus time 

for the time-dependent, relatively larger U/Pb fractionation factor, and the standard error of the 

mean of the consistently time-invariant and smaller 207Pb/206Pb fractionation factor. These 

uncertainties are given in Table S1. Errors on single analyses without the standard calibration 

uncertainty are given below. Age interpretations are based on 207Pb/206Pb dates for analyses with 



 

 

207Pb/206Pb and 206Pb/238U dates >1500 Ma. Otherwise, interpretations are based on 206Pb/238U 

dates. Analyses with discordance, defined as the relative difference between the 207Pb/235U and 

206Pb/238U dates, outside of uncertainty of 5% were removed. Errors are at 2σ. 

 
 
CA-TIMS U-Pb Geochronology Methods 

High-precision U-Pb dates were obtained by chemical abrasion isotope dilution thermal 

ionization mass spectrometry (CA-TIMS) from analyses of single zircon grains (Table 1), 

modified after Mattinson (2005). Zircon grains dated by CA-TIMS were selected and plucked 

from the epoxy mounts based on LA-ICPMS data and CL images, except for the sample with 

grains that were too small for mounting.  

Zircon grains were transferred into 300 μl Teflon PFA microcapsules that were placed in a large-

capacity Parr vessel, and the grains were partially dissolved in 120 μl of 29 M HF for 12 hours at 

190°C (chemical abrasion; Mattinson, 2005). Grains were returned to 3 ml Teflon PFA beakers, 

HF was removed, and were immersed in 3.5 M HNO3, ultrasonically cleaned for an hour, and 

fluxed on a hotplate at 80°C for an hour. The HNO3 was removed, and the grains were rinsed 

twice in ultrapure H2O before being reloaded into the 300 μl Teflon PFA microcapsules (rinsed 

and fluxed in 6 M HCl during sonication and washing of the zircon) and spiked with the 

EARTHTIME mixed 233U-235U-205Pb tracer solution (ET535). Grains were dissolved in Parr 

vessels in 120 μl of 29 M HF with a trace of 3.5 M HNO3 at 220°C for 48 hours, dried to 

fluorides, and re-dissolved in 6 M HCl at 180°C overnight. U and Pb were separated from the 

zircon matrix using an HCl-based anion-exchange chromatographic procedure (Krogh, 1973), 

eluted together and dried with 2 µl of 0.05 N H3PO4. 



 

 

Pb and U were loaded on a single outgassed Re filament in 5 µl of a silica-gel/phosphoric acid 

mixture (Gerstenberger and Haase, 1997), and U and Pb isotopic measurements made on a GV 

Isoprobe-T multicollector thermal ionization mass spectrometer equipped with an ion-counting 

Daly detector. Pb isotopes were measured by peak-jumping all isotopes on the Daly detector for 

160 cycles, and corrected for 0.18 ± 0.03%/a.m.u. (1σ) mass fractionation. Transitory isobaric 

interferences due to high-molecular weight organics, particularly on 204Pb and 207Pb, disappeared 

within approximately 30 cycles, while ionization efficiency averaged 104 cps/pg of each Pb 

isotope. Linearity (to ≥1.4 x 106 cps) and the associated deadtime correction of the Daly 

detector were determined by analysis of NBS982. Uranium was analyzed as UO2+ ions in static 

Faraday mode on 1012 ohm resistors for 300 cycles, and corrected for isobaric interference of 

233U18O16O on 235U16O16O with an 18O/16O of 0.00206. Ionization efficiency averaged 20 mV/ng 

of each U isotope. U mass fractionation was corrected using the known 233U/235U ratio of the 

ET535 tracer solution.  

CA-TIMS U-Pb dates and uncertainties were calculated using the algorithms of Schmitz and 

Schoene (2007), ET535 tracer solution (Condon et al., 2015) with calibration of 235U/205Pb =  

100.233, 233U/235U = 0.99506, and 205Pb/204Pb = 11268, and U decay constants recommended by 

Jaffey et al. (1971) and 238U/235U of 137.818 (Hiess et al., 2012). 206Pb/238U ratios and dates were 

corrected for initial 230Th disequilibrium using DTh/U = 0.2 ± 0.1 (2σ) and the algorithms of 

Crowley et al. (2007), resulting in an increase in the 206Pb/238U dates of ~0.09 Ma. All common 

Pb in analyses was attributed to laboratory blank and subtracted based on the measured 

laboratory Pb isotopic composition and associated uncertainty. U blanks are estimated at 0.013 

pg.  



 

 

Weighted mean 206Pb/238U dates are calculated from equivalent dates (probability of fit 

>0.05) using Isoplot 3.0 (Ludwig, 2003) with error at the 95% confidence interval. 

Error is computed as the internal standard deviation multiplied by the Student's t-

distribution multiplier for a two-tailed 95% critical interval and n-1 degrees of 

freedom when the reduced chi-squared statistic, mean squared weighted deviation 

(MSWD) (Wendt and Carl, 1991), takes a value less than its expectation value plus its 

standard deviation at the same confidence interval (i.e., MSWD  <1+2*sqrt[2/(n-1)]). 

This error is expanded via multiplication by the sqrt(MSWD) when the MSWD is  

≥1+2*sqrt[2/(n-1)] to accommodate unknown sources of over dispersion. Errors on 

the weighted mean dates are given as ± x / y / z, where x is the internal error based 

on analytical uncertainties only, including counting statistics, subtraction of tracer 

solution, and blank and initial common Pb subtraction, y includes the tracer 

calibration uncertainty propagated in quadrature, and z includes the 238U decay 

constant uncertainty propagated in quadrature. Internal errors should be considered when 

comparing our dates with 206Pb/238U dates from other laboratories that used the same tracer 

solution or a tracer solution that was cross-calibrated using EARTHTIME gravimetric standards. 

Errors including the uncertainty in the tracer calibration should be considered when comparing 



 

 

our dates with those derived from other geochronological methods using the U-Pb decay scheme 

(e.g., laser ablation ICPMS). Errors including uncertainties in the tracer calibration and 238U 

decay constant (Jaffey et al., 1971) should be considered when comparing our dates with those 

derived from other decay schemes (e.g., 40Ar/39Ar, 187Re-187Os). Errors on dates from individual 

analyses are 2σ. 

 

U-Pb Geochronology Results 

Thirty grains from ACP yield LA-ICPMS dates of 935 ± 25 to 95 ± 3 Ma. Six grains yield CA-

TIMS dates of 99.897 ± 0.073 to 99.544 ± 0.089 Ma. The three youngest dates have a weighted 

mean date of 99.588 ± 0.091 / 0.096 / 0.143 Ma (Mean Squared Weighted Deviation (MSWD) = 

1.6, probability of fit = 0.30).  

Seventeen grains from AH yield LA-ICPMS dates of 106 ± 6 to 96 ± 3 Ma. Six grains yield CA-

TIMS dates of 99.616 ± 0.069 to 99.473 ± 0.085 Ma. The five youngest dates have a weighted 

mean of 99.514 ± 0.047 / 0.055 / 0.120 Ma (MSWD = 1.3, probability of fit = 0.28).  

Forty-five grains from COI1-A yield LA-ICPMS dates of 108 ± 4 to 95 ± 2 Ma. Six grains yield 

CA-TIMS dates of 100.225 ± 0.066 to 99.654 ± 0.065 Ma. The three youngest dates have a 

weighted mean of 99.670 ± 0.081 / 0.086 / 0.137 Ma (MSWD = 0.2, probability of fit = 0.79).  

Twenty-nine grains from COI1-B yield LA-ICPMS dates of 1229 ± 25 to 93 ± 2 Ma. Five grains 

yield CA-TIMS dates of 99.802 ± 0.065 to 99.459 ± 0.066 Ma. The two youngest dates have a 

weighted mean of 99.497 ± 0.294 / 0.295 / 0.314 Ma (MSWD = 2.7, probability of fit = 0.10).  

Six grains from COI-2 yield CA-TIMS dates of 99.597 ± 0.064 to 99.208 ± 0.089 Ma. The three 

youngest dates have a weighted mean of 99.264 ± 0.089 / 0.094 / 0.142 Ma (MSWD = 1.4, 

probability of fit = 0.25).  



 

 

Eleven grains from DE1 yield LA-ICPMS dates of 173 ± 6 to 94 ± 3 Ma. 

Twenty-one grains from DE2 yield LA-ICPMS dates of 108 ± 4 to 94 ± 2 Ma. Five grains yield 

CA-TIMS dates of 100.975 ± 0.075 to 99.505 ± 0.066 Ma. The four youngest dates have a 

weighted mean of 99.567 ± 0.056 / 0.063 / 0.124 Ma (MSWD = 2.5, probability of fit = 0.06). 

Fifteen grains from DE3 yield LA-ICPMS dates of 110 ± 3 to 92 ± 2 Ma. Six grains yield CA-

TIMS dates of 99.449 ± 0.068 to 99.339 ± 0.065 Ma that have a weighted mean of 99.368 ± 

0.035 / 0.046 / 0.116 Ma (MSWD = 1.5, probability of fit = 0.17). 

Twenty-seven grains from E1 yield LA-ICPMS dates of 110 ± 7 to 96 ± 4 Ma. Eight grains yield 

CA-TIMS dates of 101.033 ± 0.066 to 99.394 ± 0.076 Ma. The five youngest dates have a 

weighted mean of 99.451 ± 0.042 / 0.052 / 0.118 Ma (MSWD = 2.0, probability of fit = 0.09). 

Forty grains from JETA yield LA-ICPMS dates of 1010 ± 28 to 93 ± 2 Ma. Eight grains yield 

CA-TIMS dates of 99.302 ± 0.080 to 98.920 ± 0.064 Ma. The four youngest dates have a 

weighted mean of 98.931 ± 0.054 / 0.062 / 0.123 Ma (MSWD = 0.1, probability of fit = 0.93). 

Forty-five grains from RHA yield LA-ICPMS dates of 108 ± 3 to 94 ± 4 Ma. Six grains yield 

CA-TIMS dates of 99.690 ± 0.065 to 99.517 ± 0.079 Ma. The four youngest dates have a 

weighted mean of 99.577 ± 0.054 / 0.062 / 0.123 Ma (MSWD = 1.6, probability of fit = 0.20). 

Forty-seven grains from RHB yield LA-ICPMS dates of 1751 ± 39 to 92 ± 6 Ma. Six grains 

yield CA-TIMS dates of 99.829 ± 0.072 to 99.540 ± 0.065 Ma.  

Forty-eight grains from WS10 yield LA-ICPMS dates of 1882 ± 46 to 93 ± 3 Ma. Six grains 

yield CA-TIMS dates of 100.084 ± 0.065 to 99.639 ± 0.065 Ma. The two youngest dates have a 

weighted mean of 99.771 ± 0.291 / 0.293 / 0.312 Ma (MSWD = 0.6, probability of fit = 0.42). 
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