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SUPPLEMENTAL TEXT S1 

Analytical Methods 

Electron Microprobe Analyses (EMPA) 

Mineral major compositions were determined at the EMPA Lab using an EPMA1720 electron 

microprobe, China University of Geosciences, Beijing. The analyses were conducted in a 

wavelength dispersive mode. The condition is condition is 15 kV acceleration voltage, 10 nA 

beam current and 1-2μm focused beam width. The peak counting time is 50s for Ca, 30s for Ni, 

20s for Mg, Fe and 10s for the other elements, while the background duration is 10 s, respectively. 

Natural minerals (Mineral Standard Mount NINM25-53, Astimex Scientific) and synthetic oxides 

were used for calibration of different elements. The data were corrected by the ZAF3 on-line 

analytical procedure. Relative errors are <1% for major elements and <10% for minor elements. 

The results of standards are presented in Table S2, and the results of olivine, clinopyroxene and 

amphibole are listed in Tables S3-S5. 

Fourier Transform Infrared Spectroscopy (FTIR) 

Clinopyroxene megacrysts were selected to determine the H2O concentrations by FTIR 

installed at the State Key Laboratory for Mineral Deposits Research, Nanjing University. The 

samples were firstly double-side polished and pasted on a glass slide for petrographic observation. 

Secondly, the clinopyroxene megacrysts with no optically visible inclusions or cracks were 

selected for FTIR analysis. The apertures are 40×40 μm, and the focused spots are located at the 

same grains of EMPA. The FTIR spectra were performed at room temperature by a BRUKER 

VERTEX 70V spectrometer equipped with a HYPERION 2000 infrared microscope. The 

analyzed resolution of the spectrometer is better than 4 cm-1. Unpolarized absorption measurement 

was adopted, and the spectral ranges from 650 to 4500 cm-1. A total of 128 scans were counted for 

each spectrum. Water contents in the clinopyroxene were calculated based on the Beer-Lambert 

law: c=A/(ε·l). Therein, c is the concentration of hydrogen species (ppm H2O), A is the integral 

absorption area (cm-1), ε is the absorption coefficient (0.704 ppm-1·cm-2 for clinopyroxene; Bell et 

al., 1995) and l is the thickness of the plate (70 μm in this study). The integral region was 

3000-3800 cm-1. 

Bulk-rock Major and Trace Elements 



Both xenoliths and megacrysts were carefully removed before they were crushed to powder. 

Bulk-rock major and trace elements were measured at the State Key Laboratory of Geological 

Processes and Mineral Resources, China University of Geosciences, Beijing. About 50 mg powder 

was weighted and totally dissolved in alkali solution, and then diluent to a constant volume in 

purified HNO3 prepared for measurement. Major element analysis was performed by LEEMAN 

LABS.INC Prodigy inductively coupled plasma Optical Emission Spectrometry (ICP-OES). The 

loss on ignition (LOI) was measured by the mass loss of 100mg rock powder before and after 

heating at 980℃ for 60 min in the Muffle furnace. Two standards of AGV-2 from U.S. Geological 

Survey (USGS) and GSR-3 from National Research Centre for Geoanalysis were adopted to 

monitor the uncertainties that are less than 1%. In addition, ~40 mg powder was weighted for trace 

elemental measurement and they were dissolved in the autoclave with HNO3-HF solution. The 

trace elements were measured by Agilent 7500a LA-ICP-MS. During the measurement, AGV2 

and GSR-3 were used to monitor the uncertainties. Cr, Sc, Cu, Zn, Sr, and Ta are better than 10% 

and the other elements are less than 5%. The results of standards of AGV-2 and GSR-3 are listed 

in Table S6. 

Bulk-rock Sr-Nd Isotopes 

Sr-Nd isotopic compositions were measured by the Neptune Plus multi-collector inductively 

coupled mass spectrometry (MC-ICP-MS) at the State Key Laboratory of Geological Processes 

and Mineral Resources, China University of Geosciences, Beijing. The powder of rock was firstly 

dissolved in the PFA beakers (Savillex®) within the HF-HNO3-HCl solution. Sr and Nd were then 

purified by the cation exchange columns in the pre-cleaned Bio-Rad cation AG50W-X12 resin and 

LN resin with HCl, respectively. The long-term reference value was 87Sr/86Sr=0.710257±11 (2σ, 

n=32) for NIST SRM 987 and 143Nd/144Nd=0.512428±8 (2σ, n=32) for Alfa Nd, which are used as 

an in-house reference standard. The employed standard BHVO-2 yielded 87Sr/86Sr of 0.703561±12 

and 143Nd/144Nd of 0.512977±7. The results are consistent with the recommended values within 

uncertainties (Xu et al., 2021). Mass fractionations were calibrated by 86Sr/88Sr = 0.1194 and 

146Nd/144Nd = 0.7219 based on the exponential law. 

Olivine SIMS Oxygen Isotope Analysis 

Olivine in situ oxygen isotopes were carried out by Cameca IMS 1280 at Institute of Geology 

and Geophysics, Chinese Academy of Sciences. Secondary ions were performed in the 



multi-collection mode under the condition of an acceleration voltage of 10 kV, Cs+ primary ion 

beam of ca. 2 nA and 10 μm diameter. During the running, Au-coated samples were fired 25×25 

μm area for 150 s, and then drilled 10×10 μm area at central. Secondary ions were run for 200 s, 

and it totally took ~4 min for each spot. The instrumental mass fractionation factor (IMF) was 

corrected using the olivine standard San Carlos. Measured 18O/16O values are normalized to 

Vienna standard mean ocean water (VSMOW; Baertschi, 1976). The internal precision was better 

than 0.2 ‰ for 18O/16O. Detailed analytical procedures have been described by Li et al. (2010) and 

Tang et al. (2015, 2019).  

 

 

Figure S1. Chemical variations of the (zoned) clinopyroxene phenocrysts, xenocrysts, 

megacrysts, pyroxenite xenoliths, glomeracrysts, zoned clinopyroxene in the 

monchiquite Ⅰ, Ⅱ and camptonite. 

 



 

Figure S2. Chemical variations of the amphibole phenocrysts, megacrysts, 

hornblendite xenoliths and the reacted rims. 

 

 

Figure S3. (a) LOI values vs. (87Sr/86Sr)t diagrams showing the influence of 

secondary alteration on the Sr isotopes. (b) LOI values vs. εNd(t) diagrams showing 

the influence of secondary alteration on the Nd isotopes. 



 

Figure S4. Comparison between the Tuoyun monchiquite Ⅰ, Ⅱ, monchiquite and 

camptonite and the experimental melts. Data source: Partial melts of amphibolite from 

Pilet et al. (2008), Silica-depleted pyroxenite from Hirschmann et al. (2003) and 

Kogiso et al. (2003), Hydrous peridotite from Hirose (1997), Gaetani and Grove 

(1998), Falloon and Danyushevsky (2000), Laporte et al. (2004), Parman and Grove 

(2004), Baker et al. (1994) and Wood & Turner (2009). 
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