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SUPPLEMENTAL TEXT S1

Analytical Methods
Electron Microprobe Analyses (EMPA)

Mineral major compositions were determined at the EMPA Lab using an EPMA1720 electron
microprobe, China University of Geosciences, Beijing. The analyses were conducted in a
wavelength dispersive mode. The condition is condition is 15 kV acceleration voltage, 10 nA
beam current and 1-2pm focused beam width. The peak counting time is 50s for Ca, 30s for Ni,
20s for Mg, Fe and 10s for the other elements, while the background duration is 10 s, respectively.
Natural minerals (Mineral Standard Mount NINM25-53, Astimex Scientific) and synthetic oxides
were used for calibration of different elements. The data were corrected by the ZAF3 on-line
analytical procedure. Relative errors are <1% for major elements and <10% for minor elements.
The results of standards are presented in Table S2, and the results of olivine, clinopyroxene and
amphibole are listed in Tables S3-S5.

Fourier Transform Infrared Spectroscopy (FTIR)

Clinopyroxene megacrysts were selected to determine the H>O concentrations by FTIR
installed at the State Key Laboratory for Mineral Deposits Research, Nanjing University. The
samples were firstly double-side polished and pasted on a glass slide for petrographic observation.
Secondly, the clinopyroxene megacrysts with no optically visible inclusions or cracks were
selected for FTIR analysis. The apertures are 40x40 pum, and the focused spots are located at the
same grains of EMPA. The FTIR spectra were performed at room temperature by a BRUKER
VERTEX 70V spectrometer equipped with a HYPERION 2000 infrared microscope. The
analyzed resolution of the spectrometer is better than 4 cm™'. Unpolarized absorption measurement
was adopted, and the spectral ranges from 650 to 4500 cm™!. A total of 128 scans were counted for
each spectrum. Water contents in the clinopyroxene were calculated based on the Beer-Lambert
law: c=A/(g1). Therein, c is the concentration of hydrogen species (ppm H20), A is the integral
absorption area (cm™!), ¢ is the absorption coefficient (0.704 ppm™'-cm for clinopyroxene; Bell et
al., 1995) and 1 is the thickness of the plate (70 um in this study). The integral region was
3000-3800 cm.

Bulk-rock Major and Trace Elements



Both xenoliths and megacrysts were carefully removed before they were crushed to powder.
Bulk-rock major and trace elements were measured at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of Geosciences, Beijing. About 50 mg powder
was weighted and totally dissolved in alkali solution, and then diluent to a constant volume in
purified HNO3 prepared for measurement. Major element analysis was performed by LEEMAN
LABS.INC Prodigy inductively coupled plasma Optical Emission Spectrometry (ICP-OES). The
loss on ignition (LOI) was measured by the mass loss of 100mg rock powder before and after
heating at 980°C for 60 min in the Muffle furnace. Two standards of AGV-2 from U.S. Geological
Survey (USGS) and GSR-3 from National Research Centre for Geoanalysis were adopted to
monitor the uncertainties that are less than 1%. In addition, ~40 mg powder was weighted for trace
elemental measurement and they were dissolved in the autoclave with HNO;-HF solution. The
trace elements were measured by Agilent 7500a LA-ICP-MS. During the measurement, AGV2
and GSR-3 were used to monitor the uncertainties. Cr, Sc, Cu, Zn, Sr, and Ta are better than 10%
and the other elements are less than 5%. The results of standards of AGV-2 and GSR-3 are listed
in Table S6.

Bulk-rock Sr-Nd Isotopes

Sr-Nd isotopic compositions were measured by the Neptune Plus multi-collector inductively
coupled mass spectrometry (MC-ICP-MS) at the State Key Laboratory of Geological Processes
and Mineral Resources, China University of Geosciences, Beijing. The powder of rock was firstly
dissolved in the PFA beakers (Savillex®) within the HF-HNOs3-HCI solution. Sr and Nd were then
purified by the cation exchange columns in the pre-cleaned Bio-Rad cation AG50W-X12 resin and
LN resin with HCI, respectively. The long-term reference value was 8’Sr/2°Sr=0.710257+11 (20,
n=32) for NIST SRM 987 and Nd/'*Nd=0.512428+8 (26, n=32) for Alfa Nd, which are used as
an in-house reference standard. The employed standard BHVO-2 yielded 37Sr/3°Sr of 0.703561+12
and "SNd/'"Nd of 0.512977+7. The results are consistent with the recommended values within
uncertainties (Xu et al., 2021). Mass fractionations were calibrated by %Sr/®Sr = 0.1194 and
146N d/!*Nd = 0.7219 based on the exponential law.

Olivine SIMS Oxygen Isotope Analysis
Olivine in situ oxygen isotopes were carried out by Cameca IMS 1280 at Institute of Geology

and Geophysics, Chinese Academy of Sciences. Secondary ions were performed in the



multi-collection mode under the condition of an acceleration voltage of 10 kV, Cs* primary ion

beam of ca. 2 nA and 10 pm diameter. During the running, Au-coated samples were fired 25%25

um area for 150 s, and then drilled 10x10 pm area at central. Secondary ions were run for 200 s,

and it totally took ~4 min for each spot. The instrumental mass fractionation factor (IMF) was

corrected using the olivine standard San Carlos. Measured '80/'°O values are normalized to

Vienna standard mean ocean water (Vsmow; Baertschi, 1976). The internal precision was better

than 0.2 %o for '#0/'%0. Detailed analytical procedures have been described by Li et al. (2010) and

Tang et al. (2015, 2019).
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Figure S1. Chemical variations of the (zoned) clinopyroxene phenocrysts, xenocrysts,

megacrysts, pyroxenite xenoliths, glomeracrysts, zoned clinopyroxene in the

monchiquite I, I and camptonite.
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Figure S2. Chemical variations of the amphibole phenocrysts, megacrysts,

hornblendite xenoliths and the reacted rims.
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Figure S4. Comparison between the Tuoyun monchiquite I, II, monchiquite and
camptonite and the experimental melts. Data source: Partial melts of amphibolite from
Pilet et al. (2008), Silica-depleted pyroxenite from Hirschmann et al. (2003) and
Kogiso et al. (2003), Hydrous peridotite from Hirose (1997), Gaetani and Grove
(1998), Falloon and Danyushevsky (2000), Laporte et al. (2004), Parman and Grove
(2004), Baker et al. (1994) and Wood & Turner (2009).
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