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in the eastern Himalaya.
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south along the N-S transect. (b) Summary of zircon 2°Pb/?*3U ages (in red color) and monazite
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Table S3. Major elements of garnet for three types of granitic gneisses from the Cona area,
southern Tibet, in the eastern Himalaya.
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Supplementary Methods

S1.1 Sample preparation

After removing the altered and weathered surface layers, fresh hand specimens were cut
into several small blocks, some for thin section production at China Geological Museum,
Beijing, China, and others for whole-rock power production and mineral separation at Yuneng
Rock and Mineral Separation Technology Co., Ltd., Langfang, China. As these granitic gneisses
are characterized by gneissosity, two thin sections were made perpendicular and parallel to the
foliation, respectively. At least 100 g of fresh blocks were crushed and then powdered in the
agate grinder to ensure that the grain sizes of whole-rock powers are less than 200 mesh.
Monazite and zircon were picked out roughly from the crushed sample blocks (ca. 80 mesh) in
different stages using the standard magnetic and density separation technologies, and then they
were handpicked carefully under the binocular microscope. Separated monazite and zircon
grains were mounted in epoxy resin and polished to expose 1/3 to 1/2 of most grains at Sample
Solution Analytical Technology Co., Ltd., Wuhan, China.

S1.2 Whole-rock major and trace element

Whole-rock major elements were determined by X-ray fluorescence (XRF) using the
lithium metaborate fusion method, while trace elements were analyzed by inductively coupled
plasma mass spectrometry (ICPMS) using the acid dissolution method. These analyses were
conducted at the ALS Chemex Laboratory, Guangzhou, China. Analytical quality is monitored
by the analysis of standard materials, blank, and repeating samples within the same batch. For
major elements and most trace elements, analytical uncertainties are below +2% and +5%,
respectively. Whole-rock major and trace element compositions for these granitic gneisses are
listed in Supplementary Table S2. The compositions of Chondrite and Primitive Mantle are
from Sun and McDonough (1989) and McDonough and Sun (1995), respectively.

S1.3 Petrological observation

Modern petrological techniques were applied to identify the petrographic texture of these
granitic gneisses at Chinese Academy of Sciences (CAS) Laboratory of Crust-Mantle Materials
and Environment in University of Science and Technology of China (USTC), Hefei, China.

Micro-X-ray fluorescence (Micro-XRF) maps were obtained using Bruker M4
TORNADO with working conditions of 50 kV and 200 pA. Mineral distribution maps of thin
sections and mineral modal proportions were constructed with the software ARMICS.

Microscope cathodoluminescence (CL) was conducted with Beacon Innovation CLF-2
system. Under the operation conditions of 15 kV and 500 pA, K-feldspar is blue, plagioclase is
dark green, kyanite is red, sillimanite is dark red, while garnet, biotite, muscovite, and quartz
are dark.

Backscattered electron (BSE) imaging, zircon CL imaging, and identification of unknown
minerals were performed using TESCAN MIRA3 SEM equipped with Mono CL system and
Oxford INCA energy dispersive spectrometer (EDS). The working conditions are 15 kV and 15
nA for BSE imaging and EDS, and 10 kV and 18 nA for CL imaging.

Garnet X-ray compositional elementary (Ca, Fe, Mg, and Mn) maps were obtained using
Shimadzu EPMA-1600. The working conditions were as follows: accelerating voltage of 15 kV,
beam current of 50 nA, dwell time of 50 ms, beam size of 1 pm, and step size of 10 um.
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Mineral inclusions and polymorph minerals such as kyanite and sillimanite were identified
by JY HORIBA LabRam HR equipped with a confocal microscope, an air-cooled CCD detector,
and a 532 nm laser excitation, with a beam size of 1 um.

S1.4 Mineral major element

Mineral major elements were determined in thin sections using Shimadzu EPMA-1600 at
USTC. The working conditions were as follows: accelerating voltage of 15 kV, beam current
of 10-20 nA (10 nA for mica, 15 nA for feldspar, and 20 nA for garnet), and beam size of 1-5
um (1 pum for mica and garnet and 5 um for feldspar). Garnet, mica, and feldspar were also
analyzed using JXA-8530F Plus at USTC with the accelerating voltage of 15 kV, the beam
current of 10 nA, and the beam size of 5 um. Natural standards were used for calibration, and
ZAF correction methods were applied to the raw data. For important major elements in each
mineral, the analytical errors were below +5%. The analytical results of garnet, mica, and
feldspar are listed in Supplementary Tables S3, S4, and S5, respectively. The representative
primary data showing the analytical error is presented in Supplementary Table S7.

S1.5 Mineral U-Th—Pb isotope and trace element

Zircon U-Th-Pb isotopes and trace elements were simultaneously analyzed in mounted
grains at USTC using an Agilent 7900 Q-ICPMS coupled to a GeoLas-HD 193nm excimer laser
ablation system. Zircon grains were ablated with a spot size of 24 or 32 um, an energy of 60
mJ, and a repetition rate of 4 Hz. Helium was used as the carrier gas and mixed with make-up
gas argon prior to introduction into the ICPMS. Each analysis includes 20 s of background
acquisition and 70 s of data acquisition. Natural zircon 91500 (1065 Ma by TIMS) (Wiedenbeck
et al., 1995) was used as an external standard to correct the isotope fraction, while GJ-1 (mean
206pb/238U age of 599.8 + 1.7 Ma by TIMS) (Jackson et al., 2004) was applied as a secondary
standard to evaluate the accuracy and precision. The weighted mean 2°°Pb/?*®U age of analyzed
GJ-11s 600.4 £0.7 Ma (26; MSWD = 0.65, n = 34), which is consistent with the recommended
value. All of these standard zircons were analyzed before and after five analyses on unknown
samples. The raw data were processed by the software ICPMSDataCal (Liu et al., 2010). Trace
element compositions of zircon were calibrated using multiple external standard glasses
(NIST610, NIST612, BIR-2G, BCR-1G, and BHVO-2G) and Si as an internal standard. A
secondary standard CGSG-1 was analyzed to assess accuracy and precision. The uncertainty is
better than £10% for important trace elements. Zircon U-Th—Pb isotope and trace element data
are provided in Supplementary Table S8.

Monazite U-Th—Pb isotopes and trace elements were simultaneously investigated in
mounted grains using an Agilent 7500a Q-ICPMS equipped with a Geolas 193nm excimer laser
ablation system at State Key Laboratory of Lithospheric Evolution in Institute of Geology and
Geophysics, CAS, Beijing, China. The laser sampling was performed with an energy of 85 mJ
at a repetition rate of 4 Hz using a small spot size of 24 um, and Helium was used as the carrier
gas. Data acquisition in ICPMS consists of approximately 20-25 s of background and 45-50 s
of sample. Matrix-matched monazite standard Delaware 44069 (mean 2°’Pb/**>U age of 424.89
+ 0.35 Ma by TIMS) (Aleinikoft et al., 2006) was used to correct the isotope fractionation and
instrumental mass discrimination. Secondary standard monazites Maine 1 (weighted mean
208pb/232Th age of 289.2 + 1.6 Ma by LA-ICPMS) (Liu et al., 2012), Jefferson County
(?%Pb/>*8U age of 363.98 + 0.74 Ma by TIMS) and Madagascar (**°Pb/?*%U age of 511.3 £4.9
Ma by TIMS) (Peterman et al., 2012) were measured to evaluate the accuracy and precision of
the analyses. The obtained weighted mean Th—Pb ages of Maine 1 (286.7 = 2.3 Ma, 26, MSWD
= 1.7, n = 8), Jefferson (362.1 = 2.9 Ma, 20, MSWD = 0.16, n = 8) and Madagascar (518.6 +
3.3 Ma, 206, MSWD = 0.04, n = 8) are identical to the recommended values. All of these standard
monazites were analyzed before and after seven analyses on unknown samples. The data
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reduction was processed by the software GLITTER 4.4. Trace element compositions of
monazite were calculated using NIST610 as an external standard, Ce as an internal standard,
and NIST612 as a secondary standard. The uncertainty of analysis is better than +10% for
important trace elements. Monazite U-Th—Pb isotope and trace element data are provided in
Supplementary Table S9.

U-Th-Pb isotopes of secondary standards during the LA-ICPMS analyses of zircon and
monazite are listed in Supplementary Table S11. The concordant age plots of zircon and
monazite were conducted using Isoplot 4.15 (Ludwig, 2008), and the decay constants of 233U,
235U, 22Th recommended by Steiger and Jiger (1977) were applied in these plots.

Garnet trace elements were determined in thin sections at USTC using an Agilent 7900 Q-
ICPMS coupled to a GeoLas-HD 193nm excimer laser ablation system. Garnet grains were
ablated with a spot size of 24 um, an energy of 100 mJ at a repetition rate of 4 Hz. Helium was
used as the carrier gas and mixed with make-up gas argon prior to introduction into the ICPMS.
Each analysis includes 20 s of background acquisition and 70 s of data acquisition. Multiple
external standard glasses of NIST610, NIST612, BIR-2G, BCR-1G, and BHVO-2G were
applied as external standards. Trace element compositions were calibrated using multiple
external standards without applying an internal standard, which is processed by the software
ICPMSDataCal (Liu et al., 2008, 2010). A secondary standard CGSG-1 was analyzed to assess
accuracy and precision. The uncertainty is better than +10% for important trace elements.
Garnet trace element compositions are provided in Supplementary Table S12.

S2.1 Garner single-component diffusion modeling
In order to quantitatively compare the diffusion rates of Mn, Fe, Mg, and Ca in garnet, we
conduct single-component diffusion modeling using the spherical diffusion equation (Crank,

1975),
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where C is the concentration of a component, ¢ is time, r is radius (distance), D is the
diffusion coefficient. It is assumed that spherical garnet is sectioned through the center and its
composition varies only in the radial direction (Shinevar et al., 2021). The used diffusion
coefficients are from Chu and Ague (2015).

As revealed by phase equilibrium modeling for felsic rocks (e.g., Yakymchuk et al., 2017),
garnet growth occurred during the prograde to peak stage (M1-M2), while garnet breakdown
and resorption took place during the retrograde stage (M2—M3). At the peak M2 stage with the
highest temperatures, the compositional profile in garnet is likely to be homogeneous, which is
the general assumption in diffusion modeling of Zou et al. (2021). For example, garnet grain
that do no preserve growth zoning, as is the case of garnet in Type I gneiss 15XZ120. Owing to
the small grain size of 0.7 mm, compositional homogenization is possible to be achieved in the
garnet core by diffusion at the peak stage. However, some garnet grains with large sizes are
able to preserve growth zoning, such as the garnet in Type II gneisses 15XZ88 (1.6 mm) and
15XZ793 (2.5 mm). In these cases, diffusion at the peak stage exerts limited effects on garnet
core, and compositional homogenization is only achieved at garnet rim.

For garnet grains in Type I gneiss 15XZ120 with weak zoning in the core, the
compositional profile was most likely been homogenized at the peak stage (Fig. 5b). Thus, the
initial condition is assumed that compositional profile of garnet (A—>B) is homogeneous
whereas the composition of outmost rim (B) is different, and the boundary is assumed to be
fixed during diffusion (Fig. S11). By contrast, for garnet grains in Type II 15XZ88 and Type III
15X793 gneisses with growth zoning in the core (Figs. 5d and 5f), the compositional
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homogenization is only achieved at the rim. Thus, the initial condition is assumed that the
compositional profile of garnet rim (A—>B) is homogeneous whereas the composition of
outmost rim (B) is different, and the boundary is assumaed to be fixed during diffusion (Figs.
S12 and S13). Garnet diffusion modeling was performed under P—T—fo> conditions of M2 to
M3 and carbon-carbon dioxide (CCO) oxygen fugacity buffer from the garnet core or the
outmost core to the outmost rim (A—B).

The modelled results show that the diffusion rate of Mn is the fastest, the diffusion rate of
Ca is the slowest, while the diffusion rates of Fe and Mg fall in between those of the Mn and
Ca. In this sense, if the retrograde process lasted for 5—16 m.y. to fit the Ca zoning, the Mn, Fe,
and Mg zonings are modified more extensively by diffusion in such a long time. As a
consequence, Xars in the garnet core is most likely to preserve the composition of the prograde
to peak stage.

S2.2 Phase equilibrium modeling

Phase equilibrium modeling were performed in the system MnNCKFMASHTO, using
Perple X 6.8.5 (Connolly, 2005; Connolly and Galvez, 2018) with an internally consistent
thermodynamic dataset of hp62ver.dat (Holland and Powell, 2011) and fluid equation of state
of Holland and Powell (1998). The used solid solution models include silicate melt, garnet,
muscovite, biotite, orthopyroxene, cordierite (White et al., 2014), plagioclase and K-feldspar
(Holland and Powell, 2003), clinopyroxene (Holland and Powell, 1998), spinel (White et al.,
2002), and ilmenite (White et al., 2000). Kyanite, sillimanite, rutile, quartz, and H>O were
considered as pure phases.

Three representative granitic gneisses that have been conducted detailed petrological
observations were selected for phase equilibrium modeling. At first, the XRF-based whole-rock
compositions were used in the calculation, P>Os, CaO, H>O, and O, (Fe203) need special
treatment. Given that whole-rock P2Os contents are only enriched in accessory mineral apatite
and monazite, P,Os was deducted from whole-rock major elements and the content of CaO was
corrected at the same time. The amounts of H>O and O (Fe2O3) were determined using 7—Mmu»0
and 7-Mo, diagrams (Figs. S14 and S15), respectively, to ensure that final mineral assemblages
are stable just above the solidus (Korhonen et al., 2013). In addition, the estimated H>O and O
(Fe203) contents were also verified by the modal proportion of hydrated minerals in thin
sections and by Fe®" contents calculated based on the charge balance for major minerals,
respectively.

However, the predicted mineral modes for Type I gneiss 15XZ120 and Type II gneiss
15XZ88 cannot be compared with the observed ones in the thin section. In this situation, the
whole-rock compositions were recalculated by combining the mineral modes from the estimate
of micro-XRF maps with mineral chemistry obtained by EPMA. The weighted average
compositions were applied for zoned minerals such as garnet and plagioclase. The proportions
and compositions of the garnet core were not included in the calculation. In these samples, two
hydrous phases of biotite and muscovite mainly control the H>O contents in the whole-rock
composition. The H,O content of biotite is calculated according to the Ti-H substitution scheme
of White et al. (2007), whereas that of muscovite is calculated by stoichiometry. The amount of
0; (Fe203) was determined similar to that of the XRF-based composition. All types of whole-
rock compositions used in the phase equilibrium modeling are listed in Supplementary Table
S13.

Since the garnet has pronounced compositional zoning, the effective whole-rock
composition was determined by subtracting the garnet core from the measured whole-rock
compositions. The strategy of subtracting the garnet core follow the method of Evans (2004)
and Du et al. (2014). All garnet is assumed to be nearly spherical and have a similar
compositional profile, and most of the whole-rock MnO is incorporated into the garnet. The
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compositions of fractionated garnet cores were polynomial fitted as a function of x as
quadrinomials (Figs. S16, S17, and S18). Therefore, the contents of major elements in garnet
can be described by the following equation:

) = for4 ol e;(x)dx (2)

where C,F(r) is the content of major element i (FeO, MgO, CaO, and MnO) in the
fractionated garnet core with the radius », and ¢;(x) is the content of major element i at point
x, which can be calculated from the fitting quadrinomials of garnet zoning.

The MnO contents of the garnet core that fractionated from the whole-rock composition

(C{,mo) can be described by the following equation:

F W M Chino(?)
Cwvino = (Cvino = Cwino) é\d i (3)
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where Cﬁno and CMnO represent the MnO contents in the whole-rock composition and
the matrix (here is equal to zero, as most of MnO is incorporated into the garnet), respectively.

Therefore, the contents of FeO, MgO, and CaO in the fractionated garnet core (C,F-) can be
written as:

F_ F Cm _ w G
Ci = Cwno oo Cwno Cno(®) )

Apart from that, garnet also contains SiO> and Al,Os, the contents of which can be
described as the following equation according to the chemical formula:

F F
Csior = 2li=Fe0, MgO, Ca0, Mn0 Ci (5

F 1 F
Cabos = 3 Zi=Fe0, MgO, Ca0, Mn0 Ci (6)

In summary, the contents of major elements (FeO, MgO, CaO, MnO, SiO», and Al,O3) for
the fractionated garnet cores can thus be deducted from the XRF-measured whole-rock
composition, and get the effective whole-rock composition.

Because plagioclase grains in Type I gneiss have relatively wide compositional ranges and
preserve obvious relict cores. By contrast, plagioclase grains in Type II and Type III gneisses
are relatively homogeneous. As a consequence, we only investigated the influence of
subtracting plagioclase core from the whole-rock composition for Type I gneiss 15XZ120.
Plagioclase is assumed to have a cuboid shape, and the plagioclase cores occupies the volume
fraction of 46.4 vol.%, which is estimated from the petrographic observation.

The 7—X pseudosections modelled using primary and core-removed compositions for three
types of granitic gneiss are illustrated in Fig. S19. The location where X = 0 represents the
primary XRF-based composition, while the location where X = 1 represents the effective whole-
rock composition from which the garnet core (Figs. S19a, S19b, and S19c¢) or plagioclase core
(Fig. S19d) is removed. The modelled results show that whether the garnet/plagioclase core is
subtracted or not has a slight effect on the topologies and mineral chemistry of the P-T
pseudosection for these samples.
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Figure S1. The location and elevation of three types of granitic gneisses from the Cona area,
southern Tibet, in the eastern Himalaya, as is illustrated in the three-dimensional satellite map
and google satellite map, respectively. (a) Three-dimensional satellite map of the Cona area
shows the major lithotectonic units and structures, which was compiled from the Google map
satellite imagery and the corresponding height mapper by 3D Map Generator, a PS add-in
software. (b) Google satellite map of the Cona area compiled in the software Google Earth,
showing the location and elevation of three types of granitic gneisses.
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Figure S2. Selected oxides versus SiO; for granitic gneisses with Neoproterozoic and Early
Paleozoic protolith ages in this study and literature (Wang et al., 2012, 2017a; Ding and Zhang,
2016; Gao et al., 2019) along the Himalayan orogen.
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Figure S3. Whole-rock major element compositions for three types of granitic gneiss from the
Cona area, southern Tibet, in the eastern Himalaya. Also shown are the other granitic gneisses
with Neoproterozoic and Early Paleozoic protolith ages in the Himalayan orogen in literature
(Wang et al., 2012, 2017a; Ding and Zhang, 2016; Gao et al., 2019). (a) Total alkali-silica
classification diagrams of Na>O + K>O versus SiO> contents. (b) A/NK versus A/CNK, where
A/NK = Al,03/(Na2O + K»>0O) molar ratios and A/CNK = AlO3/(CaO + NaxO + K»O) molar
ratios.
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Figure S4. Chondrite normalized rare earth element (REE) patterns (a, ¢) and primitive mantle
normalized trace element spider diagrams (b, d) for granitic gneisses with Neoproterozoic and
Early Paleozoic protolith age in this study and literature (Wang et al., 2012, 2017a; Ding and
Zhang, 2016; Gao et al., 2019) along the Himalayan orogen. The chondrite values are after Sun
and McDonough (1989), and the primitive mantle values are after McDonough and Sun (1995).
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Figure SS. Representative Raman spectra of diagnostic minerals in Type III granitic gneiss
15X793 from the Cona area, southern Tibet, in the eastern Himalaya. (a) Intergrowth of
ilmenite with sillimanite in the matrix. (b) Rutile inclusion in garnet. (¢) Kyanite inclusion in
garnet. (d) Fibrous sillimanite in the matrix. (e) Sillimanite inclusion in the monazite rim, where
LA-ICPMS analysis gives Th—Pb age of 14.8 + 0.3 Ma. (f) Sillimanite inclusion in the monazite
rim, where LA-ICPMS analysis gives Th—Pb age of 15.8 + 0.2 Ma.
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Figure S6. Garnet X-ray compositional elementary (Ca, Fe, Mg, and Mn) maps for three types
of granitic gneisses from the Cona area, southern Tibet, in the eastern Himalaya. (a—d) Type I
granitic gneiss 15XZ120. (e—h) Type II granitic gneiss 15XZ88. (i—1) Type III granitic gneiss
15XZ793.
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Figure S7. Photomicrographs and compositional profiles of another garnet porphyroblasts for
three types of granitic gneisses from the Cona area, southern Tibet, in the eastern Himalaya. (a,
b) Type I granitic gneiss 15XZ120. (c, d) Type II granitic gneiss 15XZ88. (e, f) Type III granitic
gneiss 15XZ93.
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Figure S8. Photomicrographs of three types of granitic gneisses from the Cona area, southern
Tibet, in the eastern Himalaya in microscopic cathodoluminescence (a—f) and compositional
profiles of plagioclase (g—i). (a) Type I granitic gneiss 15XZ120, plagioclase inclusion (yellow)
in garnet porphyroblasts (black). (b, ¢) Type I granitic gneiss 15XZ120, matrix plagioclase
either in contact with garnet or not is zoned and characterized by bright yellow core and dark
yellow rim. The plagioclase outmost rim in contact with K-feldspar is marked by the
intergrowth of plagioclase and quartz representing the myrmekite. (d) Type II granitic gneiss
15XZ88, matrix plagioclase shows remarkable zoning, the outmost rim of which is dominated
by the growth of myrmekite. (e, ) Type III granitic gneiss 15XZ93, the dark yellow rim
overgrowths on the bright yellow core, the intergrowth of plagioclase and quartz span the
plagioclase and K-feldspar. The red dots denote the analyzed points, and the number
corresponds to the Xan.
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Figure S9. Diagrams of representative trace element contents and ratios for zircon from three
types of granitic gneisses from the Cona area, southern Tibet, in the eastern Himalaya.
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Figure S10. BSE images of monazite inclusions for three types of granitic gneisses from the
Cona area, southern Tibet, in the eastern Himalaya. (a—) Type I gneiss 15XZ120, multiphase
crystal inclusions composed of biotite + K-feldspar + quartz + plagioclase in monazite. (d—e)
Type II gneiss 15XZ123, multiphase crystal inclusions composed of biotite + K-feldspar +
quartz + thorite + pyrite + apatite in monazite. (f) Type II gneiss 15XZ123, the rim of monazite
is partially replaced by biotite and thorite. (g) Type II gneiss 15XZ88, allanite is included in
monazite. (h) Type II granitic gneiss 15XZ88, multiphase crystal inclusion consists of K-
feldspar + quartz + apatite in monazite. (i) Type III gneiss 15XZ93, monazite contains
multiphase crystal inclusion is composed of biotite + K-feldspar + thorite. (j) Type III granitic
gneiss 15XZ93, multiphase crystal inclusions consist of cuspate K-feldspar + plagioclase and
plagioclase + K-feldspar + apatite + thorite in monazite. (k) Type III gneiss 15XZ101,
multiphase crystal inclusion is composed of cuspate K-feldspar + quartz + apatite in monazite.
(1) Type III gneiss 15XZ101, the rim of monazite is partially corroded by K-feldspar + apatite
+ thorite.
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Figure S11. Garnet single component diffusion modeling for Type I granitic gneiss 15XZ120
from the Cona area, southern Tibet, in the eastern Himalaya. In order to quantitatively compare
the diffusion rate of Mn, Fe, Mg, and Ca in garnet, we conduct spherical diffusion modeling
using the newly calibrated diffusion coefficients of Chu and Ague (2015). We assume an initial
homogeneous profile from core to rim (A—>B) and a contrast composition at outmost rim (B),
and the boundary is fixed as the initiation. Garnet diffusion was performed under P—T—fo»
conditions of 730°C to 675°C, 0.8 GPa to 0.6 GPa, and CCO oxygen fugacity from garnet core
to outmost rim (A—>B). The modelled results show that the diffusion rate of Mn is the fastest,
the diffusion rate of Ca is the slowest, while the diffusion rates of Fe and Mg fall in between
those of Mn and Ca.
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Figure S12. Garnet single component diffusion modeling for Type II granitic gneiss 15XZ88
from the Cona area, southern Tibet, in the eastern Himalaya. To quantitatively compare the
diffusion rate of Mn, Fe, Mg, and Ca in garnet, we conduct spherical diffusion modeling using
the newly calibrated diffusion coefficients of Chu and Ague (2015). We assume an initial
homogeneous profile of the rim (A—>B) and a contrast composition at outmost rim (B), the
boundary is fixed as the initiation. Garnet diffusion was performed and under P-T—fo.
conditions of 780°C to 710°C, 1.0 GPa to 0.76 GPa, and CCO oxygen fugacity from garnet
inner rim to outmost rim (A—>B). The modelled results show that the diffusion rate of Mn is
the fastest, the diffusion rate of Ca is the slowest, while the diffusion rates of Fe and Mg fall in
between those of Mn and Ca.
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Figure S13. Garnet single component diffusion modeling for Type III granitic gneiss 15XZ93
from the Cona area, southern Tibet, in the eastern Himalaya. To quantitatively compare the
diffusion rate of Mn, Fe, Mg, and Ca in garnet, we conduct spherical diffusion modeling using
the newly calibrated diffusion coefficients of Chu and Ague (2015). We assume an initial
homogeneous profile of the rim (A—>B) and a contrast composition at outmost rim (B), the
boundary is fixed as the initiation. Garnet diffusion was performed and under P-7—fo.
conditions of 860°C to 725°C, 1.4 GPa to 0.75 GPa, and CCO oxygen fugacity from garnet
inner rim to outmost rim (A—>B). The modelled results show that the diffusion rate of Mn is
the fastest, the diffusion rate of Ca is the slowest, while the diffusion rates of Fe and Mg fall in
between those of Mn and Ca.
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Figure S15. 7-Mo> and T-Mu20 pseudosections modelled by software Perple X 6.8.5 using
point count-based compositions for Type I and II granitic gneisses from the Cona area, southern
Tibet, in the eastern Himalaya. (a, b) Type I granitic gneiss 15XZ120. (c, d) Type II granitic
gneiss 15XZ88. Vertical blue dash lines in the figures denote the O2(Fe2O3) and H,O contents
used for subsequent modeling.
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Figure S16. Polynomial fitting of compositional zoning as a function of X into quadrinomial
for garnet from Type I gneiss 15XZ120. Inset shows the fitting functions for the almandine,
pyrope, grossular, and spessartite endmembers. The grey area denotes the fractionated core, r
and R represent the radius of core and bulk garnet, respectively.
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Figure S17. Polynomial fitting of compositional zoning as a function of x into quadrinomial
for garnet from Type II gneiss 15XZ88. Inset shows the fitting functions for the almandine,
pyrope, grossular, and spessartite endmembers. The grey area denotes the fractionated core, r
and R represent the radius of core and bulk garnet, respectively.

Page 17 of 23




(@) y = 0.74411 + 0.00291x + 0.15508x (D) y = 0.06753 - 0.00171x + 0.7792¢*
7 0.17607x + 0.0618x P71 0.11301%° + 0.03124X
ogl  R?=0.9990 S oos|  R°=0.9505
B = & & = "=
P‘I///' n
06 - 0.06 -
£ = L
3 MR = 0.63 g
0.4 0.04 |
rR = 0.63
02 0.02 -
0.0 | L | L | ' | ' | 0.00 | L 1 ' | ' | ' |
0.0 03 06 0.9 12 mm 0.0 0.3 06 0.9 12 mm
core &~ rim core & rim
0.14 0.14
y = 0.06753 - 0.00171x + 0.7792x* (C) | (d) y=0.08753 - 0.00171x + 0.7792
_— 011301 + 0.03124X¢ 012 -0.11301x° + 0.03124X?
. R2=0.9975 | R®=0.9852
0.10 |- 0.10 |
.
Q.08 - 0.08 |-
£ g —
(=] o) [ B -
|
=006 | % 0.06 - \.\l“‘_/'
0.04 |- /R = 0.63 0.04 -
rR = 0.63
0.02 |- 0.02 -
000 1 1 1 1 1 000 1 L L L L
0.0 03 0.6 0.9 1.2 mm 0.0 0.3 0.6 0.9 12 mm
core = rim core = rim

Figure S18. Polynomial fitting of compositional zoning as a function of x into quadrinomial
for garnet from Type III gneiss 15XZ93. Inset shows the fitting functions for the almandine,
pyrope, grossular, and spessartite endmembers. The grey area denotes the fractionated core, r
and R represent the radius of core and bulk garnet, respectively.
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Figure S19. 7-X pseudosections modelled by software Perple X 6.8.5 using the primary and
core-removed compositions for three types of granitic gneiss from the Cona area, southern Tibet,
in the eastern Himalaya. The location where X = 0 represents the primary XRF-based
composition, while the location where X = 1 represents the effective whole-rock composition
from which the garnet core (a, b, c) or plagioclase core (d) is removed. The composition
1sopleths of Xars in garnet, Ti in biotite, and Xan in plagioclase are also shown. (a) Type I granitic
gneiss 15XZ120, garnet core is removed. (b) Type II granitic gneiss 15XZ88, garnet core is
removed. (c) Type III granitic gneiss 15XZ93, garnet core is removed. (d) Type I granitic gneiss
15XZ120, plagioclase core is removed. The modelled results show that whether the
garnet/plagioclase core is subtracted or not has a slight effect on the topologies and mineral
chemistry of the P—T pseudosection for these samples.
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Figure S20. P-T pseudosections modelled by software Perple X 6.8.5 using the XRF-based
whole-rock compositions for Type I and II granitic gneisses from the Cona area, southern Tibet,
in the eastern Himalaya. (a, b) Type I granitic gneiss 15XZ120. (c, d) Type II granitic gneiss

15X7Z88.
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Figure S21 (a) Zircon and monazite U-Th—Pb ages show characteristic trends against the elevations and the distances below the STDS for these
dated granitic gneisses from north to south along the N-S transect. (b) Summary of zircon 2°°Pb/?*8U ages (in red color) and monazite 2°*Pb/>*?Th
ages (in blue color) for three types of granitic gneisses from the Cona area, southern Tibet, in the eastern Himalaya.
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Figure S22. The pie chart diagrams show the light-rare earth elements (LREE), heavy-rare
earth elements (HREE), and Y contents that each mineral contained according to the whole-
rock trace element mass balance calculation for important REE-bearing minerals in three types
of granitic gneisses from the Cona area, southern Tibet, in the eastern Himalaya.
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Figure S23. (a) A schematic diagram for trace element partition between garnet and
zircon/monazite during garnet growth and resorption process. Chondrite normalized REE
patterns of garnet (b) and the calculated partition coefficients of REE between zircon and garnet

(c) and monazite and garnet (d) for Type III gneiss 15XZ93 from the Cona area, southern Tibet,
in the eastern Himalaya.
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