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SUPPLEMENTARY MATERIAL 1: ANALYTICAL METHODS 

Optical cathodoluminescence microscopy 

  Optical cold CL photomicrography was performed on polished thin sections containing apatite 

grains using an Olympus microscope attached to a RELIOTRON III CL stage housed at the State 

Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, 

Wuhan (GPMR-CUG). The low-vacuum Relion system was set to an electron source operated at 15 

to 20 kV and about 500 to 800 μA. 

Zircon U-Pb dating 

  Using cathodoluminescence (CL) and transmitted and reflected light micrographs, suitable zircon 

grains were selected for further analysis. Zircon U-Pb dating analysis was performed by LA-ICP-MS 

housed at the GPMR-CUG, using an ArF excimer laser system (GeoLas Pro, 193-nm wavelength) 

and a quadrupole ICP-MS (Thermo iCap). The analyses were carried out with a pulse rate of 10 Hz, 

beam energy of 10 J/cm2, and a spot diameter of 32 μm. NIST 612 was analyzed once for every eight 

analyses of the tested sample. The zircon U-Pb ratio was corrected by using zircon 91500 

(Wiedenbeck et al., 1995) as an external standard. The U-Pb ages were processed by ICPMSDataCal 

9.7 program (Liu et al., 2008), and calculation of U-Pb ages was carried out using the Isoplot-3 

software (Ludwig, 2003).  

LA-ICP-MS apatite U-Pb dating 

  In-situ U-Pb isotope analyses of apatite were carried out using the same instrumental 

configuration as described earlier for zircon U-Pb dating. The laser was set at 8-Hz repetition rate 

and 5 J/cm2 energy density with 60 μm spot size. The MAD apatite standard was used as the 

matrix-matched standard to correct the U-Pb fractionation and the instrumental mass discrimination 



(485 Ma; Thomson et al., 2012). Tera-Wasserburg diagrams were constructed using Isoplot-3 

(Ludwig, 2003), with 95% confidence in accuracy. The upper intercept represents the initial 

207Pb/206Pb ratios, which were used for common Pb correction to obtain relatively precise 206Pb/238U 

ages (Chen and Simonetti, 2013).  

SHRIMP U-Pb dating of xenotime 

  Xenotime grains of sufficient size (>20 μm in diameter) were drilled out from the polished thin 

sections of auriferous pyrite-rich vein material into ~2 mm plugs and then cast into 25 mm epoxy 

mount along with standards. The mount was analyzed using the SHRIMP-II housed at the Research 

School of Earth Sciences, Australian National University. Optical and BSE images were used to 

guide the placement of the primary ion beam during SHRIMP analyses. Analytical procedures and 

operational settings were similar to those described in Cross and Williams (2018). The SHRIMP 

U-Th-Pb data were reduced with the Squid-2 software (Ludwig, 2012) using spot average values for 

all ratios. Xenotime MG-1 (490 Ma; Fletcher et al., 2004) and BS-1 (509 Ma; Aleinikoff et al., 2012) 

were used as primary standards for the calculcation of Pb/U and Pb/Th ages. The U and Th 

abundances used in matrix corrections were derived from the SHRIMP data. The REE abundances 

used in matrix corrections for xenotime are from electron microprobe analyses made adjacent to 

SHRIMP analytical spots. Data plots were prepared using Isoplot-3 (Ludwig, 2003). Individual 

analyses are presented with 1σ errors, whereas weighted mean dates are quoted with 95% confidence 

limits.  

LA-ICP-MS trace element analysis of apatite 

In-situ LA-ICP-MS trace element analyses of apatite were conducted using the same instrument 

configuration described earlier for U-Pb apatite dating. International standards NIST 610 and NIST 



612 were used to correct signal drift, and the international glass standards NIST BCR-2G, BHVO-2G, 

and BIR-1G were used as external standards. Spot ablations were carried out using a 33 μm spot size 

at 3 J/cm2 and 10 Hz, with a 35 s baseline and 40 s of ablation. The detection limits were calculated 

for each element in each spot analysis. Off-line data processing was performed using ICPMSDataCal 

9.7 software (Liu et al. 2008). The analytical uncertainties were generally lower than 10% (relative) 

for most trace elements.  

In-situ apatite Sr isotope analysis 

  In-situ Sr isotope analysis of apatite spots was obtained by the same laser ablation system coupled 

to a Nu Plasma MC-ICP-MS housed at GPMR-CUG. The analytical protocol followed the method 

described by Ramos et al. (2004) and was fully described by Chen et al. (2018). The samples were 

analyzed using a 50 to 90 μm spot size and a 10 Hz repetition rate. The Sr isotopic data were 

acquired by static multi-collection in low-resolution mode using nine Faraday collectors. During 

measurements, critical spectral interferences were systematically monitored, including Kr, Rb, and 

doubly charged REE, as outlined by Ramos et al. (2004). The natural ratio of 85Rb/87Rb (2.593) was 

used for correction of isobaric Rb interference by the exponential law, assuming that Rb has the same 

mass discrimination as Sr. The in-house apatite standards Durango and MAD, and a modern-day 

Coral (Qingdao, China) standard were used to evaluate the analytical accuracy and the potential 

matrix-matched effect during analyses (Yang et al., 2014; Chen et al., 2018).  
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