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Alternate source map version 
 



 
 

Episode 3 provenance map similar to Fig.8C, but DZmix data points were modeled with the 11-
source set plus a 1.085 Ga unimodal source to represent detritus shed from the Pike’s Peak Batholith. This 
granitoid exhibits a unique age for intraplate intrusive rocks in central Colorado (Fig. 7) because it is 
commonly associated with a series of 1.3-0.95 Ga intrusive complexes that were primarily emplaced 
along the eastern and southern margin of Laurentia during the Grenville Orogeny (Whitmeyer and 
Karlstrom, 2007). Note the increase of local sediment in the central proximal Denver Basin., but also an 
increase in in samples on the Wyoming, Montana, and Arizona shelves (See Fig. 8 for legend) 
 
Figure data references 
 
Figure 8 
 
A) Episode 1: Paleogeography from Gehrels et al. (2011). Stratal thickness and zero Mississippian 
thickness line (white with tick marks) are from Carlson (1999). 
 



 
Carlson (1999), figure 3A. 
 

 
Gehrels et al. (2011) figure 10C. 
 
 
 
B) Episode 2: Paleogeography (Ye et al., 1996; Gehrels et al., 2011), and paleocurrent data (Billingsley 
and Beus, 1999; Bowen and Weimer, 2003; Gleason et al., 2007; Wang and Bidgoli, 2019) 
 



 
 
Gehrels et al. (2011) figure 10D. 
 
 
 

 
Ye et al. (1996) figure 2B. 
 
C) Episode 3: Paleogeography (Ye et al., 1996; Blakey, 2009; Gehrels et al., 2011; Lawton et al., 2017), 
stratal thickness maps (Ye et al., 1996; Blakey, 2009), and paleocurrent data (Opdyke and Runcorn, 1960; 
Johnson, 1987; Geslin, 1998; Soegaard and Caldwell, 1990; Eberth and Miall, 1991; Gleason et al., 2007; 
Sweet and Soreghan, 2010; Lawton et al., 2015; this study) were used in map construction. 
 



 
Ye et al. (1996) figure 2F. 
 

 
Ye et al. (1996) figure 2G. 
 

 
Blakey (2009) figure 14A. 
 



 
Gehrels et al. (2011) figure 10E. 
 
 

 
Lawton et al. (2017) figure 1C. 
 
D) Episode 4: Paleogeography (Loope et al., 2004; Leary et al., 2017), stratal thickness maps (Ewing, 
1993; Ye et al., 1996), and paleocurrent data (McKee, 1940; Rea, 1967; Conyers, 1975; Adams, 1980; 
Loope et al., 2004; Lawton et al., 2015; Brand et al., 2015; Dickinson, 2018) were used in map 
construction. 
 



 
Loope et al., 2004 
 

 
Blakey (2009) figure 15A. 
 

 
Leary et al. (2017) figure 2. 
 



 
Ewing (1993) figure 2. 
 

 
Ye et al. (1996) figure 2H. 
 
E) Episode 5: Paleogeography (Dickinson and Gehrels, 2008; Lawton et al., 2018 ), stratal thickness maps 
(Dickinson and Gehrels, 2008; Kent and Irving, 2010), and paleocurrent data (Willis, 1967; Harms and 
Williams, 1988; Dickinson and Gehrels, 2008; Brand et al., 2015; Riggs et al., 2016; this study) were 
used in map construction. 
 

 
Dickinson and Gehrels (2008) figure 4. 
 



 
Dickinson and Gehrels (2008) figure 15. 
 

 
Lawton et al. (2018) figure 13A 
 

 
Kent and Irving (2010) figure 7. 
 
Data handling note 
 

We decided to do minimal data re-filtering to published detrital zircon data to test the 
effectiveness of a more “hands-off” approach to big-data interrogation. However, for the few samples that 
included no age transition for best age or discordance filter (e.g., Hagadorn et al., 2016), we preformed 



modest data manipulation. In these cases, we used 900 Ma for the 206Pb/238U and 206Pb/207Pb best age 
transition and < -10 and > 20% discordance filter. 

 
Outliers 
 
 Of the 22 new detrital zircon samples that we present in this paper 4 contain outlier grains that 
pass filters (discussed above), but exhibit influences of Pb-loss and/or significant common Pb 
(inclusions). In general, samples exhibit high levels of discordance (mean: 61%), where the discordant 
ages trend along a line (a.k.a., discordia) that intersects with approximately middle Cenozoic ages on the 
condcordia (Fig. A1). We interpret these data to indicate Pb-loss and attribute this behavior to interaction 
with hydrothermal fluids during wide-spread volcanic activity during the late Paleogene in the North 
American western interior. The two samples (SJMT3 and BDJLS1) that each contain an outlier grain 
dated younger than the depositional age of the host rock exhibit this same trend (Fig. A2) and are 
interpreted to have experienced Pb-loss. The two samples that contain grains (SJMT1 and 2RFMMT3) 
with ages that are too old are a result of common Pb based on their isotopic compositions.  

 
Figure A1. Concordia plots of accepted and rejected analyses containing analyses younger than 
depositional age of host rock (indicated by arrow and reported mean age and uncertainty). 



 
Figure A2. Concordia plots of accepted and rejected analyses containing analyses that are too old 
(indicated by arrow and reported mean age and uncertainty). 

 The outlier grains described above beg the question: Are the rest of the analyses reliable? In 
short, yes. While there are certainly other analyses within concordant grains that exhibit similar behavior 
to what is described above, the intrasample consistency between similar samples, both within the new 
ages reported here, as well as cited ages, provide a broad base of support for data fidelity. We do not 
remove the outlier analyses described above from modeling inputs in order to avoid a boutique approach. 
Rather, we thought it appropriate to flag these concerns while allowing the combination of modeling 
techniques to render outlier data inconsequential. In handling and interrogating big-data, there is almost 
certainly going to be problematic data contained within. However, an advantage to leveraging large data 
sets (i.e., n > 103) is that the few outliers are overwhelmed by the preponderance of reliable data. We 
believe that our approach demonstrates this phenomenon. 
 
New detrital zircon sample descriptions 

1CCT3: 36.3097, -106.33868 

Mapped as the El Cobre Formation (Kempter et al., 2007), but is broadly considered Cutler 
Formation/Group (Ebert and Miall, 1991). Sample was collected in El Arroyo del Cobre, NM, at the base 
of a ~12 m medium-grain, reddish-brown trough cross-bedded sandstone. Sandstone exhibited an 
erosional base and contained meter-scale bar-forms (interpreted as laterally accreting). Sandstone also 
contained convolute-bedding, bioturbated zones, and abundant rip-up clasts. 

1DCGT243: 38.69387, -108.97721 

Mapped as Cutler Formation/Group, undivided (Williams, 1964). Collected outside of Gateway, CO from 
a 2 m fining upward, pebble to medium-grain sandstone, directly below the basal Moenkopi Formation 
gypsum bed. Gypsiferous cementation yields a highly friable rock and poorly exposed sedimentary 



structures. This area and stratigraphic position of the Cutler Formation is interpreted as White Rim 
Formation equivalent based on subsurface and outcrop correlation (Donald Rasmussen, personal 
communication). 

1MHRCT201: 37.21699, -109.71693 

Mapped as Halgaito Tongue of the Cutler Formation/Group (Haynes et al., 1972). Collected from a 2 m 
fine-grain, parallel laminated and minor-trough cross-bedded sandstone, interbedded with mottled red-
brown mudstones containing abundant calcareous concretion nodules. 

1MPT15: 37.751, -107.68359 

Collected from Molas Formation (Evans and Reed, 2007) along Highway 550, west of Molas Lake. 
Sample was collected from an erosionally based, horizontally laminated with internal scouring, medium-
grain, fining-upward to very fine-grain sandstone. Gravel-floaters at base of sandstone are chert and top 
of sandstone exhibits quartz sand-fracture fill.  

2PCGT180: 38.71605, -108.91465 

Mapped as Cutler Formation/Group, undivided (Williams, 1964) west of the Precambrian basement 
contact. Collected outside of Gateway, CO from a ~ 3 m structureless granule-size conglomerate with 
coarse to very-coarse grain sandstone matrix. 

2RFMMT3: 39.67757, -107.69687 

Mapped as the Maroon Formation (Tweto et al., 1978). Sample was collected from a ~3.8 m medium to 
coarse-grain, trough-cross-bedded, pinkish-gray sandstone. 

2RFMMT383: 39.6645, -107.69758 

Mapped as the State Bridge Formation (Tweto et al., 1978). Collected from a 1.3 m gray, fine-grain 
trough-cross-bedded sandstone that contains ripple cross-lamination, and is interbedded with red-brown 
rippled silty mudstones with climbing-ripple sandstone lenses. Cross-beds exhibit gray shale partings. 

3FTCT166: 38.71164, -109.25915 

Mapped as Cutler Formation/Group (Williams, 1964). Sample collected around Fisher Towers, east of 
Moab, UT. Sample is from a ~ 1.5 m mauve-colored, coarse-grain sandstone containing a pebbly base and 
pebble lags along ~ 80 cm cross-bed foresets. Sandstone is part of a ~ 5 m amalgamated, trough-cross-
bedded sandstone interval. 

4SMST778: 38.48116, -105.83811 

Sample was collected from the middle of member 4 of the upper Sangre de Cristo Formation (Wallace et 
al., 1997; 2000), which is located east of Salida, CO and north of the Arkansas River. The sample is a 
trough-cross-bedded, coarse- to medium-grain with occasional granules, poorly sorted, angular, arkosic 
sandstone. 

1CORT137: 38.50481, -109.66605 

Mapped as Rico Formation (Williams, 1964), but is considered Cutler Formation/Group (Trudgill, 2011), 
as the Rico Formation is not current formation distinction. Collected from along the Colorado River, west 
of Moab, UT, in a ~ 15 m medium-grain, micaceous, mauve, trough-cross-bedded sandstone with 
abundant very coarse- to pebble-floaters, and erosional base.  



AROM1: 38.48209, -105.91215 

Mapped as Leadville Limestone (Taylor et al., 1975). Collected from ~ 1.5 m fine-grain, structureless, 
lense-shaped (~ 4 m long) quartzose sandstone. Associated with black micrite and intra-micrite that 
contain cm-scale sandstone lenses. 

BDJ1ES1: 35.96477, -105.29186 

Collected in the Espiritu Santo Formation, southeast, along strike of the base of measured section J1 in 
Baltz and Meyers, 1999. Location is on the north side of the Mora River, east of Mora, CO. The medium-
grain, silica-cemented, quartz arenite does not exhibit observable sedimentary structures, but is 
interbedded with pervasively recrystallized limestone, and is close to the thrust-fault basement contact. 

BDJLS1: 35.96218, -105.28649 

Collected in the lower Sandia Formation, southeast, along strike of the middle of measured section J1, 
slightly upsection from Morrowan Brachiopod sample (USGS 27164-PC) in Baltz and Meyers, 1999. 
Location is on the north side of the Mora River, east of Mora, CO. Sample was comprised of coarse- to 
very coarse-grain, quartz-rich sandstone. Poor exposure of formation as associated gray shale beds form 
slope. 

CT1: 38.10326, -105.60459 

The sample site is mapped as undifferentiated Sangre de Cristo Formation (Hoy and Ridgeway, 2002), 
but we favor a Crestone Conglomerate assignment because of lithology and pervasive thrust-faulting in 
area (Hoy and Ridgeway, 2002). This is a lithologic distinction and both units in the area are considered 
Pennsylvanian-Permian (Hoy and Ridgeway, 2002). The sample site is located ~ 4.5 km east of Hermit 
Peak in the Sangre de Cristo Mountains. Sample is from a boulder conglomerate with a coarse-grain 
sandstone matrix. Sandstone is arkosic and gravel is comprised of igneous and metamorphic clasts. 

FFM2: 38.5351, -104.88141 

Collected from the upper Fountain Formation, west of Colorado Springs, CO. Sample is from a 2 m, 
erosionally based, coarse-grain, trough-cross-bedded sandstone containing abundant granules of quartz 
and feldspar. 

SJMT1: 37.7503, -107.68007 

Collected from a fine-grain, sandy limestone bed in the Leadville Limestone, north of the Molas Lake. 
Limestone is significantly recrystallized, and original depositional features are not present. 

SJMT2: 37.745, -107.69656 

Collected from lower Hermosa Group (Nair et al., 2018), most likely in the upper Pinkerton Formation or 
lower Paradox Formation. Sample collected from a very coarse- to coarse-grain, trough-cross-bedded 
sandstone with erosional base and is on top of a red-brown, clay-rich, fine-grain, structureless sandstone. 

SJMT3: 37.62048, -107.8149 

Collected from lower Paradox Formation (Gianniny and Miskell-Gerhardt, 2009) at the north end of the 
Hermosa Cliffs. Sample is from a ~ 10 m, multi-story, trough-cross-bedded, coarse-grain sandstone, and 
contained quart floater pebbles. Interbedded with fissile gray shale. 

SJMT4: 37.51413, -107.82876 



Collected from lower Honaker Trail Formation (Gianniny and Miskell-Gerhardt, 2009) at the north side 
of Goulding Creek/south end of the Hermosa Cliffs. Sample is from a micaceous, fine to medium-grain, 
trough cross-bedded sandstone that contained plant impressions along bedding planes. 

SJMT7: 37.38501, -107.85325 

Mapped as Cutler Formation (Stevens et al., 1974), south of Hermosa Lake, and north of Durango, CO. 
Sample collected from a 15 m amalgamated channel-complex that is medium-grain, trough cross-bedded 
sandstone. 
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