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1.1 Site U1345 age-depth model and isotope stratigraphy

Cook et al. (2016) generated the age-depth model for the primary core splice at Site
U1345. Briefly, a multi-species assemblage of benthic foraminifera was picked from
from the >150 um size fraction of core sub-samples and analyzed for 580 by standard
methods. Marine Isotope Stages in U1345 were identified by selecting depths at the
mid-point of transitions between glacial and interglacial intervals in the '80 record and
tuning those depths to the glacial/interglacial boundaries in the LR04 global benthic
5'80 stack (Lisiecki and Raymo, 2005).

Cook et al. (2016) provide estimates for uncertainty in identifying the depth for certain
MIS boundaries in the primary core splice (Table 2 of Cook et al., 2016). Deglaciation
timing for Termination Il was not well constrained in the Cook et al. (2016) age model
for Site U1345 due to poor carbonate preservation and low benthic foraminifera
abundance. We refined the U1345 age model during the time periods of the purported
ages of the Old Crow tephra. We added an additional well-defined age control point at
the 580 maximum during MIS 7 (Table S1; Fig. S1). We also increased the precision of
the depth for the MIS 6-5 boundary using bulk sediment 5'°N to tie U1345 to nearby
Site U1343 (main text Fig. 1), which has good carbonate preservation and a highly
resolved benthic '80 record for the MIS 6-5 transition (Asahi et al., 2016; Worne et al.,
2019). Unpublished bulk sediment 5'°N for Site U1345 (Mea Cook, unpublished data;
Fig. S1) was measured on a Carlo Erba 1108 elemental analyzer coupled to a Thermo-
Finnegan Delta Plus XP isotope ratio mass spectrometer (EA-IRMS) at the University of
California, Santa Cruz, following Knudson and Ravelo (2015). An abrupt 8'°N decrease
in U1343 is coincident with the benthic 5’80 decrease of the penultimate deglaciation
(Worne et al., 2019; Fig. S1). Sites U1343 and U1345 are expected to have similar 3'°N
through time because they are both located on the continental slope in the Bering Sea
"Green Belt" (Springer et al., 1996) and have similar nutrient utilization and productivity
today. Therefore, we assumed that the midpoint of the 8'°N decrease in U1345 was
also the midpoint of the deglacial transition, which allowed us to increase the precision
estimate for the depth of the MIS 6-5 transition. Compared to the published Cook et al.
(2016) age model, this revised age model yields ages for sampled depths in this study
that are ~3 kyr younger for MIS 5, ~1.5-2.5 kyr younger for MIS 6, and ~2.5-7 kyr older
for MIS 7. The interpretations in the main text are not affected by these minor age
model revisions.
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Fig. S1: Top: The benthic foraminiferal 580 in U1345 (blue; Cook et al., 2016) and
U1343 (red; Worne et al., 2019) with the LR04 global benthic 5'80 stack (grey; Lisiecki
and Raymo, 2005). The U1345 data are on the updated age model (this study). The
multi-species U1343 and U1345 data have been corrected to U. peregrina (offsets in
Cook et al., 2016; Asahi et al., 2016). Tie points to LR04 for the U1345 and U1343 age
models are indicated with "+" for U1343 and "x" for U1345. Bottom: The bulk 3'°N from
U1345 (Mea Cook, unpublished data) and U1343 (Worne et al., 2019). Vertical green
bar marks the ~15 kyr interval of Site U1345 with ~40-60% concentration of detrital Old
Crow tephra shards.

We estimated age uncertainty for our sampled intervals at Site U1345 by: (1) calculating
sedimentation rates between tie points from the updated age model, with the
sedimentation rates at each age control point calculated as the average of the overlying
and underlying sedimentation rate; (2) converting the age control point depth
uncertainty to age uncertainty using the calculated sedimentation rate at that tie point;
(3) combining in quadrature the age uncertainty for U1345 tie points with the estimated
4 kyr age uncertainty (20) for glacial-interglacial transitions in the LR04 benthic stack;
(4) Bayesian age-depth modeling using the BACON package (Blaauw and Christen,
2011) in R (R Core Team, 2022), defined by the age uncertainties for tie points
calculated in (3), and with boundaries defined for the age control points and
accumulation rate priors between boundaries as the calculated sedimentation rates.



The 20 age model uncertainties from BACON are ~4-9 kyr, with the highest uncertainty
during MIS 6 between ~142 and 181 ka (Table S2). Uncertainty in the age-depth model
does not affect the identification of glacial and interglacial stages. The 5'0 double-
minima during MIS 7 are clearly identified, as is the sustained interval of high 30
during MIS 6 (Fig. S1, top). The abrupt 5'80 drop during the MIS 6-5 transition is clearly
identified in U1343 (Fig. S1, top), and abrupt decreases in 3'°N correlate U1345 to
U1343 during that deglacial interval. Old Crow tephra appears abruptly 157 + 9 ka,
shortly before the MIS 6 glacial maximum indicated by maxima in benthic 30 (main
text Fig. 2) and bulk 3'5N (Fig. S1), and persists at high concentration for ~15 kyr until
~142 + 8 ka (Fig. S1; main text Fig. 2).

1.2 Detrital tephra preparation and analysis

Glass shards were separated from archived 2-cm half-round samples taken from cores
that make up the IODP Site U1345 primary splice. The archived samples had been
freeze-dried, sieved to isolate the 63—150 pym size fraction, then oven-dried (Cook et al.,
2016). Details on sedimentology and bioturbation of sampled depth intervals from the
various cores that make up the primary splice from Site U1345 are given in Table S2.

Glass shards were first separated from the heavy mineral fraction using lithium
heteropolytungstate (LST) heavy liquid at 2.45 g cm-3, followed by a second separation
at 2.10 g cm for samples with abundant biogenic silica. Glass shards were mounted on
pucks in epoxy, polished, and carbon-coated for analysis by electron probe
microanalysis (EPMA) on a JEOL JXA-8900R at the University of Alberta.

Instrument calibration was by mineral and glass standards. We determined major-
element composition of glass shards by wavelength-dispersive spectrometry, with a 10
pum defocused beam, 15 keV accelerating voltage, and 6 nA beam current. These
instrument conditions minimize potential for Na and K migration during analysis of glass.
We bracketed analysis of unknowns (every ~75 shards) with two matrix-matched
standards of known composition: ID3506 (the rhyolitic Lipari obsidian) and a reference
sample of the secondarily hydrated rhyolitic Old Crow tephra, both of which are
commonly used as secondary standards for glass analyses (Kuehn et al., 2011).

All data were normalized to 100 wt% on a water-free basis. Final data were screened
for data quality, and analyses subject to clear contamination by microlites or epoxy were
removed from further consideration. The vetted detrital tephra dataset is provided as an
Excel file in Data Set 1. Full results for secondary standards that were run concurrently
with unknowns are also provided in Data Set 1.

1.3 Expert knowledqge identification of Old Crow tephra from major element composition

We used expert knowledge assessment (by B.J.L. Jensen) of the detrital shard dataset
to identify Old Crow tephra, based on its distinct major element composition as gleaned



from thousands of analyses in the literature (e.g., Preece et al., 2011) and from its use
as a routine secondary standard for EPMA glass analyses at University of Alberta. This
first assessment of Old Crow tephra identification was confirmed by visual analysis of
K20 vs CaO (in weight percent; wt%) plots (main text Fig. 3). The compositional field of
Old Crow tephra is particularly distinct for this pair of oxides; bivariate plots of other
oxide pairs are not as useful because of compositional overlap between Old Crow
tephra and other Yukon, Alaska, and Kamchatka tephra with a similar SiO2 wt% range.

1.4 Classification and validation: a machine learning approach to identifying Old Crow
tephra in the Site U1345 detrital shard population

We also used machine learning classification to independently identify shards of Old
Crow tephra (OCt) from the Site U1345 detrital shard major element composition
dataset. The classification approach closely follows Bolton et al. (2020), using an
Artificial Neural Network and Random Forest (ANN and RF) ensemble.

We modified the Bolton et al. (2020) approach to include:

e Additional training data pre-processing to normalize non-OCt imbalances in
tephra representativity,

e The addition of correlated noise to the non-OCt data to better simulate a wide
range of potential glass compositions,

e Optimizing log-loss (instead of kappa) during tuning and employing a probability
threshold to balance cross-validation prediction errors of commission and
omission,

e Chlorine wt% as a predictand, in addition to the major oxides employed by Bolton
et al. (2020).

The input training data include 1470 OCt analyses from reference samples previously
identified and over 17,000 analyses on other Quaternary tephras from Alaska, Yukon,
and Kamchatka. These data were drawn from published literature (Preece et al., 1999,
2011; Kaufman et al., 2001; Péweé et al., 2006; Jensen et al., 2008, 2011, 2013, 2016;
Westgate et al., 2013; Davies et al., 2016) and the Tephrakam database (Portnyagin et
al., 2020).

The training data pre-processing is as follows (Fig. S2). First, OCt analyses were
separated from the incoming Alaska/Yukon data and held aside without further
manipulation (except for centring and scaling, as stipulated by Bolton et al. 2020). Then,
the remaining Alaska/Yukon data and Kamchatka data were joined and subjected to
SMOTE (Synthetic Minority Over-sampling Technique) processing (Chawla et al.,
2002). The SMOTE algorithm acts to systematically oversample under-represented
classes in a dataset using a nearest neighbour-type approach, such that “new” data are
randomly generated along the vectors between nearby neighbours while over-
represented classes are simultaneously down-sampled. In this way, each tephra
identified in the non-OCt dataset is adjusted to be similarly representative. Such a
process was necessary due to the imbalances present in the dataset: some tephras,



such as VT and Chester Bluff (CB1), are very well characterized, with ~600 points each
(and ten others represented by > 200 data points), whereas more than 250 other
tephras in the dataset had 30 or fewer analyses each. In total, 402 unique non-OCt
tephras are represented in the training data. Once SMOTE was completed, the dataset
comprised 17,113 points, with each tephra represented by ~43 points each.
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Fig. S2: Diagrammatic representation of training data processing workflow

However, our goal was not to identify distinct non-OCt tephras but to characterize the
full diversity of compositions encompassed by the label “not Old Crow tephra”. As such,
we supplemented our analyses and SMOTE-generated data with an equally-sized
dataset synthesized by adding 150% correlated noise to the tephra-balanced non-OCt
data. Such a noise addition process assumes noise should be normally distributed while
maintaining the covariance structure of the original dataset (Brand, 2002). As a result, a
wide range of potential compositions is generated, while the sums of major oxides
remain at ~100%. To give an idea of the effect of noise addition, the mean SiO2 of the
tephra-balanced data was 71.73 weight-percent and ranged between 48.83 and 80.38.
In comparison, the noise-added dataset had a similar mean (70.31) but ranged from
24.75 to 113.54. Such a difference in ranges highlights the strength of such a correlated
noise structure. Without limiting the dataset to weight-percents between 0 and 100, not
only is the full array of “reasonable” and expected glass compositions generated, but
“impossible” (or at least improbable) ones are produced too, while still maintaining
realistic comparisons between analytes. This also circumvents problematically skewing
the synthetic geochemical data in an attempt to impose “closure”.

The two parts of the ensemble model were trained independently on the entire training
set, comprised of (1) Old Crow analyses and (2) the combined non-OCt and
synthesized background data. Tuning was conducted by varying model
hyperparameters over a grid and bootstrap resampling the data, repeated 25 times for
each hyperparameter setting. Hyperparameters were selected to minimize log-loss and,
ideally, produce models with consistent probability profiles. In this case, the selected RF
learner sampled three variables at each decision tree split, and the ANN model had 19
nodes in its hidden layer and used a decay value of 0.01778279. Although accuracy
was not directly optimized, this routine still returned very high bootstrapped performance
(ANN = 99.93%; RF = 99.95%).



Although the non-OCt tephras were balanced concerning their representativity within
the non-OCt training data, a significant class imbalance remained between the “positive
case” (OCt) and the “negative case” (non-OCt and background). The ratio between the
two cases was about 1:24. We employed so-called threshold-moving to balance the
sensitivity and specificity of the learners. By varying the probability decision threshold
that defines the split between a positive and a negative case, we found the threshold
wherein false positives and false negatives were most balanced in the bootstrapped
dataset. This so-called “optimal” threshold is visualized as the point where the sensitivity
and specificity curves intersect for a given model (Fig. S3). In this study, both the RF
and ANN base-learners had optimal thresholds at 0.882. Thus, we used this value as
the decision threshold for the mean ensemble that combined their predictions (Data Set
2).
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Fig. S3: Sensitivity and specificity plot for two component classification models
evaluated over a range of probability thresholds. Dotted lines = sensitivity; solid lines =
specificity; vertical dashed grey line = optimal threshold; black lines = RF; red lines =
ANN

In addition to making predictions on the EPMA data collected for the present study, we
also tested the OCt classifier ensemble on a different dataset of previously identified
tephra to validate it. This test set contained analyses of OCt shards and Holocene
tephras from AK, both of which were withheld from the training set. This test allows us
to critically evaluate the sensitivity of the model both to detect and label Old Crow
tephra shards not included in the training data and other non-OCt compositions. In this
case, we evaluate the primary (i.e., non-detrital) tephras from the Eklutna Lake record in
Alaska (Fortin et al., 2019; Bolton et al., 2020) and the secondary standard data for OCt



that were collected concurrently and published with this dataset. Evaluation of the OCt
classifier ensemble on this test set, treating OCt as the “positive class”, reveals a
sensitivity of 0.9695, a specificity of 1.0000, overall accuracy of 0.9956 (95% CI:
0.9887-0.9988), and a kappa value of 0.9819. When the four presumed false negative
OCt points were scrutinized, they were found to be contaminated by microlites (i.e., they
were mixed glass/mineral analyses). Excluding these contaminated points gives percent
performance (accuracy = 1; 95% CI: 0.9959-1). This performance indicates that the OCt
classifier is robust and generalizable, and reliably makes predictions on new data not
included in its training dataset. Put simply, the validation test successfully identified all
non-microlite-contaminated OCt shards as OCt, and did not identify any non-OCt shards
as OCt.

Compared to the expert knowledge assessment (Section 1.3), the machine learning
classifier applied to the Site U1345 detrital shard dataset identified the same shards as
Old Crow. Similarly, the machine learning classifier did not identify any shards as Old
Crow tephra that were not flagged as Old Crow tephra by expert knowledge
assessment.
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Table S1. Revised age-depth model for Site U1345, updated from Cook et al., 2016.

LR04 Stack U1345
Age (ka) Depth (m CCSF-A)
Core top 0 00+1.0
MIS 2/1 14 6.0+ 0.5
MIS 5/4 71 23.6+1.0
MIS 6/5* 130 352+0.2
MIS 7/6 191 47.8+1.0
MIS 7 8'80 max** 223 57.7+0.2
MIS 8/7 243 68.7+1.0
MIS 9/8 300 87.0+2.0

* revised uncertainty based on correlation of abrupt d15N transition
**new tie point



Table S2. Summary of Site U1345 detrital glass samples (Cook et al., 2016; Expedition 323

Scientists, 2011)

University Depth (m Age *age Benthic U1345 shards Ooid Old Crow Sedimentology®  Bioturbation®
of Alberta CCSF-A) (ka)?  (ka)® 5'%0 hole- analyzed® Crow tephra
accession (VPDB)® core- tephra shard
number section shards concentr-
ation (%)

UA 3744 6.26 14.7 3.6 4.54 U1345D- 50 4 8.0 sandy silt absent
UA 3745 23.16 69.6 5.1 4.37 U11;1-E‘>‘C- 50 2 4.0 silt slight
UA 3746 28.09 93.8 9.2 4.20 U13:|3-|4-gA— 49 2 4.1 silt slight
UA 3747 32.25 115. 8.1 4.25 nggA— 50 7 14.0 silt slight
UA 3748 33.07 1?9. 7.2 4.16 U143|-:1-56D— 50 3 6.0 silt slight
UA 3749 36.07 1§4. 5.6 4.60 U;‘;-;D- 101 9 8.9 sandy silt slight
UA 3750 37.59 14?1. 7.5 4.49 U;‘al‘jl-gD- 101 50 49.5 silty clay slight
UA 3833 38.35 14?5. 8.1 4.45 U;‘al‘jl-gD- 101 63 62.4 silty clay slight
UA 3868 38.50 14?6. 8.2 4.08 Uf&l‘—:l-gA- 92 45 48.9 diatom sandy silt  absent
UA 3834 38.87 14(1)7. 8.5 4.31 U152|:|4_53A- 50 30 60.0 diatom sandy silt  absent
UA 3835 40.02 1583. 9.1 4.20 U152|:|4_gA- 50 22 44.0 diatom sandy silt  absent
UA 3836 40.74 1536. 9.2 4.37 U152|:|4_gA- 50 20 40.0 diatom sandy silt  absent
UA 3861 41.34 1589. 9.2 4.51 U151|3-|4-5?A- 50 0 0.0 diatom sandy silt ~ absent
UA 3862 41.94 1672. 9.3 4.36 U151|3-|4-5?A- 50 0 0.0 diatom sandy silt ~ absent
UA 3863 42.34 124. 9.3 4.56 U151|3-|4-E?A- 48 1 2.1 laminated absent

6 5H-6 diatom sandy silt
UA 3751 42.98 167. 9.1 4.36 U1345C- 99 0 0.0 silt absent
UA 3837 43.10 1(;8. 9.1 4.26 U153|-:1-gC— 100 0 0.0 silt absent
UA 3864 44.26 1733. 8.7 4.29 Uf:;-gC— 47 0 0.0 laminated clayey  absent

9 5H-5 sand
UA 3865 45.78 181. 7.3 4.25 U1345C- 50 0 0.0 clayey sand absent
UA 3866 47.39 159. 5.0 4.26 U153|‘—11-5?A- 50 0 0.0 sandy silt slight
UA 3867 49.61 186. 5.6 4.06 Uf&l‘—:l-gA- 97 0 0.0 sandy silt slight
UA 3752 51.13 2(?1. 5.9 3.84 U162|:1-53A- 100 0 0.0 sandy silt slight
UA 3838 52.61 2(?6. 5.9 3.95 U%-:l_gA- 100 0 0.0 sandy silt slight
UA 3753 53.66 2160. 5.7 3.88 U162|:1_55C- 100 0 0.0 silt slight
UA 3754 56.66 2109. 4.2 4.21 U162|:1_54C- 49 0 0.0 silty clay slight
UA 3755 66.03 21?8. 41 3.68 U?;I-E?C- 49 0 0.0 clayey silt moderate
UA 3756 73.06 2526. 6.4 4.49 UZ;I-E?C- 52 0 0.0 clayey silt moderate
UA 3757 74.22 2§0. 6.9 4.50 Ui%-SjC- 51 0 0.0 clayey silt moderate

aupdated from Cook et al. (2016); details in Appendix DR1

b2sigma uncertainty from BACON (Blaauw and Christen, 2011) age model; details in

Appendix DR1

¢from Cook et al. (2016)

dnumber of shards excludes analyses with
phenocrysts/microlites
¢from Expedition 323 Scientists

(2011)





