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1.1 Site U1345 age-depth model and isotope stratigraphy 

Cook et al. (2016) generated the age-depth model for the primary core splice at Site 
U1345. Briefly, a multi-species assemblage of benthic foraminifera was picked from 
from the >150 µm size fraction of core sub-samples and analyzed for δ18O by standard 
methods. Marine Isotope Stages in U1345 were identified by selecting depths at the 
mid-point of transitions between glacial and interglacial intervals in the δ18O record and 
tuning those depths to the glacial/interglacial boundaries in the LR04 global benthic 
δ18O stack (Lisiecki and Raymo, 2005).  

Cook et al. (2016) provide estimates for uncertainty in identifying the depth for certain 
MIS boundaries in the primary core splice (Table 2 of Cook et al., 2016). Deglaciation 
timing for Termination II was not well constrained in the Cook et al. (2016) age model 
for Site U1345 due to poor carbonate preservation and low benthic foraminifera 
abundance. We refined the U1345 age model during the time periods of the purported 
ages of the Old Crow tephra. We added an additional well-defined age control point at 
the δ18O maximum during MIS 7 (Table S1; Fig. S1). We also increased the precision of 
the depth for the MIS 6-5 boundary using bulk sediment δ15N to tie U1345 to nearby 
Site U1343 (main text Fig. 1), which has good carbonate preservation and a highly 
resolved benthic δ18O record for the MIS 6-5 transition (Asahi et al., 2016; Worne et al., 
2019). Unpublished bulk sediment δ15N for Site U1345 (Mea Cook, unpublished data; 
Fig. S1) was measured on a Carlo Erba 1108 elemental analyzer coupled to a Thermo-
Finnegan Delta Plus XP isotope ratio mass spectrometer (EA-IRMS) at the University of 
California, Santa Cruz, following Knudson and Ravelo (2015). An abrupt δ15N decrease 
in U1343 is coincident with the benthic δ18O decrease of the penultimate deglaciation 
(Worne et al., 2019; Fig. S1). Sites U1343 and U1345 are expected to have similar δ15N 
through time because they are both located on the continental slope in the Bering Sea 
"Green Belt" (Springer et al., 1996) and have similar nutrient utilization and productivity 
today. Therefore, we assumed that the midpoint of the δ15N decrease in U1345 was 
also the midpoint of the deglacial transition, which allowed us to increase the precision 
estimate for the depth of the MIS 6-5 transition. Compared to the published Cook et al. 
(2016) age model, this revised age model yields ages for sampled depths in this study 
that are ~3 kyr younger for MIS 5, ~1.5–2.5 kyr younger for MIS 6, and ~2.5–7 kyr older 
for MIS 7. The interpretations in the main text are not affected by these minor age 
model revisions. 
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Fig. S1: Top: The benthic foraminiferal δ18O in U1345 (blue; Cook et al., 2016) and 
U1343 (red; Worne et al., 2019) with the LR04 global benthic δ18O stack (grey; Lisiecki 
and Raymo, 2005). The U1345 data are on the updated age model (this study). The 
multi-species U1343 and U1345 data have been corrected to U. peregrina (offsets in 
Cook et al., 2016; Asahi et al., 2016). Tie points to LR04 for the U1345 and U1343 age 
models are indicated with "+" for U1343 and "x" for U1345. Bottom: The bulk δ15N from 
U1345 (Mea Cook, unpublished data) and U1343 (Worne et al., 2019). Vertical green 
bar marks the ~15 kyr interval of Site U1345 with ~40-60% concentration of detrital Old 
Crow tephra shards. 

________________________________________________ 
 
We estimated age uncertainty for our sampled intervals at Site U1345 by: (1) calculating 
sedimentation rates between tie points from the updated age model, with the 
sedimentation rates at each age control point calculated as the average of the overlying 
and underlying sedimentation rate; (2) converting the age control point depth 
uncertainty to age uncertainty using the calculated sedimentation rate at that tie point; 
(3) combining in quadrature the age uncertainty for U1345 tie points with the estimated 
4 kyr age uncertainty (2σ) for glacial-interglacial transitions in the LR04 benthic stack; 
(4) Bayesian age-depth modeling using the BACON package (Blaauw and Christen, 
2011) in R (R Core Team, 2022), defined by the age uncertainties for tie points 
calculated in (3), and with boundaries defined for the age control points and 
accumulation rate priors between boundaries as the calculated sedimentation rates.  
 



The 2σ age model uncertainties from BACON are ~4–9 kyr, with the highest uncertainty 
during MIS 6 between ~142 and 181 ka (Table S2). Uncertainty in the age-depth model 
does not affect the identification of glacial and interglacial stages. The δ18O double-
minima during MIS 7 are clearly identified, as is the sustained interval of high δ18O 
during MIS 6 (Fig. S1, top). The abrupt δ18O drop during the MIS 6-5 transition is clearly 
identified in U1343 (Fig. S1, top), and abrupt decreases in δ15N correlate U1345 to 
U1343 during that deglacial interval. Old Crow tephra appears abruptly 157 ± 9 ka, 
shortly before the MIS 6 glacial maximum indicated by maxima in benthic δ18O (main 
text Fig. 2) and bulk δ15N (Fig. S1), and persists at high concentration for ~15 kyr until 
~142 ± 8 ka (Fig. S1; main text Fig. 2). 
 
 
1.2 Detrital tephra preparation and analysis 
 
Glass shards were separated from archived 2-cm half-round samples taken from cores 
that make up the IODP Site U1345 primary splice. The archived samples had been 
freeze-dried, sieved to isolate the 63–150 µm size fraction, then oven-dried (Cook et al., 
2016). Details on sedimentology and bioturbation of sampled depth intervals from the 
various cores that make up the primary splice from Site U1345 are given in Table S2. 
 
Glass shards were first separated from the heavy mineral fraction using lithium 
heteropolytungstate (LST) heavy liquid at 2.45 g cm-3, followed by a second separation 
at 2.10 g cm-3 for samples with abundant biogenic silica. Glass shards were mounted on 
pucks in epoxy, polished, and carbon-coated for analysis by electron probe 
microanalysis (EPMA) on a JEOL JXA-8900R at the University of Alberta. 
 
Instrument calibration was by mineral and glass standards. We determined major-
element composition of glass shards by wavelength-dispersive spectrometry, with a 10 
µm defocused beam, 15 keV accelerating voltage, and 6 nA beam current. These 
instrument conditions minimize potential for Na and K migration during analysis of glass. 
We bracketed analysis of unknowns (every ~75 shards) with two matrix-matched 
standards of known composition: ID3506 (the rhyolitic Lipari obsidian) and a reference 
sample of the secondarily hydrated rhyolitic Old Crow tephra, both of which are 
commonly used as secondary standards for glass analyses (Kuehn et al., 2011). 
 
All data were normalized to 100 wt% on a water-free basis. Final data were screened 
for data quality, and analyses subject to clear contamination by microlites or epoxy were 
removed from further consideration. The vetted detrital tephra dataset is provided as an 
Excel file in Data Set 1. Full results for secondary standards that were run concurrently 
with unknowns are also provided in Data Set 1. 
 
 
1.3 Expert knowledge identification of Old Crow tephra from major element composition 
 
We used expert knowledge assessment (by B.J.L. Jensen) of the detrital shard dataset 
to identify Old Crow tephra, based on its distinct major element composition as gleaned 



from thousands of analyses in the literature (e.g., Preece et al., 2011) and from its use 
as a routine secondary standard for EPMA glass analyses at University of Alberta. This 
first assessment of Old Crow tephra identification was confirmed by visual analysis of 
K2O vs CaO (in weight percent; wt%) plots (main text Fig. 3). The compositional field of 
Old Crow tephra is particularly distinct for this pair of oxides; bivariate plots of other 
oxide pairs are not as useful because of compositional overlap between Old Crow 
tephra and other Yukon, Alaska, and Kamchatka tephra with a similar SiO2 wt% range. 
 
 
1.4 Classification and validation: a machine learning approach to identifying Old Crow 
tephra in the Site U1345 detrital shard population 
 
We also used machine learning classification to independently identify shards of Old 
Crow tephra (OCt) from the Site U1345 detrital shard major element composition 
dataset. The classification approach closely follows Bolton et al. (2020), using an 
Artificial Neural Network and Random Forest (ANN and RF) ensemble. 
 
We modified the Bolton et al. (2020) approach to include: 

• Additional training data pre-processing to normalize non-OCt imbalances in 
tephra representativity, 

• The addition of correlated noise to the non-OCt data to better simulate a wide 
range of potential glass compositions, 

• Optimizing log-loss (instead of kappa) during tuning and employing a probability 
threshold to balance cross-validation prediction errors of commission and 
omission, 

• Chlorine wt% as a predictand, in addition to the major oxides employed by Bolton 
et al. (2020). 
 

The input training data include 1470 OCt analyses from reference samples previously 
identified and over 17,000 analyses on other Quaternary tephras from Alaska, Yukon, 
and Kamchatka. These data were drawn from published literature (Preece et al., 1999, 
2011; Kaufman et al., 2001; Péwé et al., 2006; Jensen et al., 2008, 2011, 2013, 2016; 
Westgate et al., 2013; Davies et al., 2016) and the Tephrakam database (Portnyagin et 
al., 2020). 
 
The training data pre-processing is as follows (Fig. S2). First, OCt analyses were 
separated from the incoming Alaska/Yukon data and held aside without further 
manipulation (except for centring and scaling, as stipulated by Bolton et al. 2020). Then, 
the remaining Alaska/Yukon data and Kamchatka data were joined and subjected to 
SMOTE (Synthetic Minority Over-sampling Technique) processing (Chawla et al., 
2002). The SMOTE algorithm acts to systematically oversample under-represented 
classes in a dataset using a nearest neighbour-type approach, such that “new” data are 
randomly generated along the vectors between nearby neighbours while over-
represented classes are simultaneously down-sampled. In this way, each tephra 
identified in the non-OCt dataset is adjusted to be similarly representative. Such a 
process was necessary due to the imbalances present in the dataset: some tephras, 



such as VT and Chester Bluff (CB1), are very well characterized, with ~600 points each 
(and ten others represented by > 200 data points), whereas more than 250 other 
tephras in the dataset had 30 or fewer analyses each. In total, 402 unique non-OCt 
tephras are represented in the training data. Once SMOTE was completed, the dataset 
comprised 17,113 points, with each tephra represented by ~43 points each. 
  
 

 
 
Fig. S2: Diagrammatic representation of training data processing workflow 

________________________________________________ 
 
However, our goal was not to identify distinct non-OCt tephras but to characterize the 
full diversity of compositions encompassed by the label “not Old Crow tephra”. As such, 
we supplemented our analyses and SMOTE-generated data with an equally-sized 
dataset synthesized by adding 150% correlated noise to the tephra-balanced non-OCt 
data. Such a noise addition process assumes noise should be normally distributed while 
maintaining the covariance structure of the original dataset (Brand, 2002). As a result, a 
wide range of potential compositions is generated, while the sums of major oxides 
remain at ~100%. To give an idea of the effect of noise addition, the mean SiO2 of the 
tephra-balanced data was 71.73 weight-percent and ranged between 48.83 and 80.38. 
In comparison, the noise-added dataset had a similar mean (70.31) but ranged from 
24.75 to 113.54. Such a difference in ranges highlights the strength of such a correlated 
noise structure. Without limiting the dataset to weight-percents between 0 and 100, not 
only is the full array of “reasonable” and expected glass compositions generated, but 
“impossible” (or at least improbable) ones are produced too, while still maintaining 
realistic comparisons between analytes. This also circumvents problematically skewing 
the synthetic geochemical data in an attempt to impose “closure”. 
 
The two parts of the ensemble model were trained independently on the entire training 
set, comprised of (1) Old Crow analyses and (2) the combined non-OCt and 
synthesized background data. Tuning was conducted by varying model 
hyperparameters over a grid and bootstrap resampling the data, repeated 25 times for 
each hyperparameter setting. Hyperparameters were selected to minimize log-loss and, 
ideally, produce models with consistent probability profiles. In this case, the selected RF 
learner sampled three variables at each decision tree split, and the ANN model had 19 
nodes in its hidden layer and used a decay value of 0.01778279. Although accuracy 
was not directly optimized, this routine still returned very high bootstrapped performance 
(ANN = 99.93%; RF = 99.95%). 



 
Although the non-OCt tephras were balanced concerning their representativity within 
the non-OCt training data, a significant class imbalance remained between the “positive 
case” (OCt) and the “negative case” (non-OCt and background). The ratio between the 
two cases was about 1:24. We employed so-called threshold-moving to balance the 
sensitivity and specificity of the learners. By varying the probability decision threshold 
that defines the split between a positive and a negative case, we found the threshold 
wherein false positives and false negatives were most balanced in the bootstrapped 
dataset. This so-called “optimal” threshold is visualized as the point where the sensitivity 
and specificity curves intersect for a given model (Fig. S3). In this study, both the RF 
and ANN base-learners had optimal thresholds at 0.882. Thus, we used this value as 
the decision threshold for the mean ensemble that combined their predictions (Data Set 
2).  
 

 
 
Fig. S3: Sensitivity and specificity plot for two component classification models 
evaluated over a range of probability thresholds. Dotted lines = sensitivity; solid lines = 
specificity; vertical dashed grey line = optimal threshold; black lines = RF; red lines = 
ANN 

________________________________________________ 
 
In addition to making predictions on the EPMA data collected for the present study, we 
also tested the OCt classifier ensemble on a different dataset of previously identified 
tephra to validate it. This test set contained analyses of OCt shards and Holocene 
tephras from AK, both of which were withheld from the training set. This test allows us 
to critically evaluate the sensitivity of the model both to detect and label Old Crow 
tephra shards not included in the training data and other non-OCt compositions. In this 
case, we evaluate the primary (i.e., non-detrital) tephras from the Eklutna Lake record in 
Alaska (Fortin et al., 2019; Bolton et al., 2020) and the secondary standard data for OCt 



that were collected concurrently and published with this dataset. Evaluation of the OCt 
classifier ensemble on this test set, treating OCt as the “positive class”, reveals a 
sensitivity of 0.9695, a specificity of 1.0000, overall accuracy of 0.9956 (95% CI: 
0.9887-0.9988), and a kappa value of 0.9819. When the four presumed false negative 
OCt points were scrutinized, they were found to be contaminated by microlites (i.e., they 
were mixed glass/mineral analyses). Excluding these contaminated points gives percent 
performance (accuracy = 1; 95% CI: 0.9959-1). This performance indicates that the OCt 
classifier is robust and generalizable, and reliably makes predictions on new data not 
included in its training dataset. Put simply, the validation test successfully identified all 
non-microlite-contaminated OCt shards as OCt, and did not identify any non-OCt shards 
as OCt.  
 
Compared to the expert knowledge assessment (Section 1.3), the machine learning 
classifier applied to the Site U1345 detrital shard dataset identified the same shards as 
Old Crow. Similarly, the machine learning classifier did not identify any shards as Old 
Crow tephra that were not flagged as Old Crow tephra by expert knowledge 
assessment.  
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Table S1. Revised age-depth model for Site U1345, updated from Cook et al., 2016.  

 LR04 Stack U1345     

 Age (ka) Depth (m CCSF-A)     

Core top 0 0.0 ± 1.0     

MIS 2/1 14 6.0 ± 0.5     

MIS 5/4 71 23.6 ± 1.0     

MIS 6/5* 130 35.2 ± 0.2     

MIS 7/6 191 47.8 ± 1.0     

MIS 7 δ18O max** 223 57.7 ± 0.2     

MIS 8/7 243 68.7 ± 1.0     

MIS 9/8 300 87.0 ± 2.0     

* revised uncertainty based on correlation of abrupt d15N transition    

**new tie point       

 
  



Table S2. Summary of Site U1345 detrital glass samples (Cook et al., 2016; Expedition 323 
Scientists, 2011)  

   

University 
of Alberta 
accession 
number  

Depth (m 
CCSF-A) 

Age 
(ka)a 

±age 
(ka)b 

Benthic 
δ18O 

(VPDB)c 

U1345 
hole-
core-

section 

shards 
analyzedd 

Old 
Crow 
tephra 
shards 

Old Crow 
tephra 
shard 

concentr-
ation (%) 

Sedimentologye Bioturbatione 

UA 3744 6.26 14.7 3.6 4.54 U1345D-
1H-4 

50 4 8.0 sandy silt absent 

UA 3745 23.16 69.6 5.1 4.37 U1345C-
3H-4 

50 2 4.0 silt slight 

UA 3746 28.09 93.8 9.2 4.20 U1345A-
4H-3 

49 2 4.1 silt slight 

UA 3747 32.25 115.
0 

8.1 4.25 U1345A-
4H-6 

50 7 14.0 silt slight 

UA 3748 33.07 119.
2 

7.2 4.16 U1345D-
4H-1 

50 3 6.0 silt slight 

UA 3749 36.07 134.
2 

5.6 4.60 U1345D-
4H-3 

101 9 8.9 sandy silt slight 

UA 3750 37.59 141.
6 

7.5 4.49 U1345D-
4H-4 

101 50 49.5 silty clay slight 

UA 3833 38.35 145.
3 

8.1 4.45 U1345D-
4H-4 

101 63 62.4 silty clay slight 

UA 3868 38.50 146.
0 

8.2 4.08 U1345A-
5H-3 

92 45 48.9 diatom sandy silt absent 

UA 3834 38.87 147.
8 

8.5 4.31 U1345A-
5H-4 

50 30 60.0 diatom sandy silt absent 

UA 3835 40.02 153.
3 

9.1 4.20 U1345A-
5H-4 

50 22 44.0 diatom sandy silt absent 

UA 3836 40.74 156.
8 

9.2 4.37 U1345A-
5H-5 

50 20 40.0 diatom sandy silt absent 

UA 3861 41.34 159.
7 

9.2 4.51 U1345A-
5H-5 

50 0 0.0 diatom sandy silt absent 

UA 3862 41.94 162.
6 

9.3 4.36 U1345A-
5H-6 

50 0 0.0 diatom sandy silt absent 

UA 3863 42.34 164.
6 

9.3 4.56 U1345A-
5H-6 

48 1 2.1 laminated 
diatom sandy silt 

absent 

UA 3751 42.98 167.
7 

9.1 4.36 U1345C-
5H-4 

99 0 0.0 silt absent 

UA 3837 43.10 168.
3 

9.1 4.26 U1345C-
5H-4 

100 0 0.0 silt absent 

UA 3864 44.26 173.
9 

8.7 4.29 U1345C-
5H-5 

47 0 0.0 laminated clayey 
sand 

absent 

UA 3865 45.78 181.
2 

7.3 4.25 U1345C-
5H-6 

50 0 0.0 clayey sand absent 

UA 3866 47.39 189.
0 

5.0 4.26 U1345A-
6H-2 

50 0 0.0 sandy silt slight 

UA 3867 49.61 196.
9 

5.6 4.06 U1345A-
6H-3 

97 0 0.0 sandy silt slight 

UA 3752 51.13 201.
8 

5.9 3.84 U1345A-
6H-4 

100 0 0.0 sandy silt slight 

UA 3838 52.61 206.
6 

5.9 3.95 U1345A-
6H-5 

100 0 0.0 sandy silt slight 

UA 3753 53.66 210.
0 

5.7 3.88 U1345C-
6H-4 

100 0 0.0 silt slight 

UA 3754 56.66 219.
8 

4.2 4.21 U1345C-
6H-6 

49 0 0.0 silty clay slight 

UA 3755 66.03 238.
2 

4.1 3.68 U1345C-
7H-5 

49 0 0.0 clayey silt moderate 

UA 3756 73.06 256.
6 

6.4 4.49 U1345C-
8H-3 

52 0 0.0 clayey silt moderate 

UA 3757 74.22 260.
2 

6.9 4.50 U1345C-
8H-4 

51 0 0.0 clayey silt moderate 

aupdated from Cook et al. (2016); details in Appendix DR1       

b2sigma uncertainty from BACON (Blaauw and Christen, 2011) age model; details in 
Appendix DR1 

    

cfrom Cook et al. (2016)          

dnumber of shards excludes analyses with 
phenocrysts/microlites 

      

efrom Expedition 323 Scientists 
(2011) 

        

 




