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Filtering and updating of carbonatite age data 
We updated the carbonatite age data following the iterative rules listed below, which 
are also provided as a workflow diagram in Fig. S1. 
(1) For a carbonatite occurrence, we select its magmatic age rather than its
mineralization age, because the mineralization age may be controversial (e.g, Bayan
Obo Fe-Nb-REE carbonatite related deposit; Yang et al., 2019; Li et al., 2021).
(2) We use the latest high-quality radiometric geochronology to update the carbonatite
database of Woolley and Kjarsgaard (2008).
(3) When no new age data are available, we adopt the age of Woolley and Kjarsgaard
(2008), except for when the age of Woolley and Kjarsgaard is an “average” age. Here,
we revise such average ages by the following rules below.

(a) Only ages that are published and have errors less than 40 m.y. are used.
(b) If there is only one individual age directly from carbonatite, this age will be
adopted. If there is more than one individual age directly from carbonatite, we will
select the optimal age according to an assessment of the relative reliability of the
geochronology references. Otherwise, the revising procedure for an average age
will follow (c).
(c) If the available ages from the same location are consistent within the range of
age errors, the “average age” will still be used. Otherwise, if the ages are consistent
within 40 m.y., the age data will be expressed by an age range, and the average age
of that range will be used for the age frequency distribution. If the ages are not
consistent within 40 m.y., these data are excluded from our age distribution analysis.

Data distrubutions 
In Figs. 2 and S3, we show age distributions according to various bin size options from 
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40 m.y. (shorter than the short bandwidth range of the 400–800 m.y. period of 
supercontinent cycle) to 400 m.y. (half of the long bandwith range of the 400–800 m.y. 
period of the supercontinent cycle). Distribution curves are evaluated by Loess (Locally 
estimated scatterplot) method and 10,000 bootstrap simulations in Acycle software (Li 
et al., 2019). 
 
Trend fitting of data 
The trends of the age frequency distributions are fitted by power law functions: 

𝑦𝑦 = 𝑎𝑎(𝑥𝑥 − 𝑏𝑏)𝑐𝑐  (1) 
The fitting model is evaluated by r2, which is calculated by the following equations: 

𝑦𝑦� = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1   (2) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖   (3) 
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑖𝑖   (4) 
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  (5) 

where n is the number of observations in the fitting model, yi is the observed value, and 
fi is the fitted value.  
 
Detrending 
To eliminate the long-term trends and focus on the fluctuations of the data, the trend 
curve value (fi) is subtracted from the corresponding value (yi) of the distribution curve: 

𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖  (6) 
 
Lead-lag relationship 
A lead-lag describes the situation where one (leading) variable is cross-correlated with 
the values of another (lagging) variable at later times. Here, we use the root mean square 
error (RMSE) to evaluate the cross-correlation between two time series, considering 
the non-normal distribution of them. 
 
The procedure is as follows. (1) Fix kimberlite series as the reference ones in the 
coordinate system and shift carbonatite series along the horizontal axis, using the bin 
size as the step size. (2) Calculate the RMSE of these two sequences at each move. The 
translation corresponding to the minimum value of RMSE is the lead-lag time of the 
two time series. 
 
Therefore, in this case, the positive lead-lag time value means the kimberlite time series 
lead the carbonatite ones, while the negative values have the opposite meaning. 
 
Multi-taper method (MTM) spectral analysis 
MTM power spectra compared robust first-order autoregressive “AR(1)” red noise 
models (Mann and Lees, 1996) are calculated in Acycle software (Li et al., 2019). 
 
Monte Carlo simulation 



The Monte Carlo method combined with the MTM method is performed to address the 
effect of the uncertainty of the estimated distribution curve on the results of the spectral 
analysis (i.e., periodic rhythms). The estimated curve exhibits periodic peaks in the 
400–800 Myr range above the 90% confidence level. First, we randomly sampled the 
age distribution curve 10,000 times within a 1σ confidence interval. Second, we detrend 
their secular trend using the rLoess (robust Locally eatimated scatterplot Regression) 
smoothing method with a span of 99%, which assigns zero weight to data outside of six 
standard deviations of the mean. We performed the non-parametric regression method 
instead of a power function to avoid the situation of a few extreme random values 
causing the parametric regression to fail to converge. Third, we calculate their power 
spectra using MTM, and note the peaks above the 90% confidence level. The calculated 
results are shown as violin plots containing kernel density plots and box plots with 
medium, interquartile ranges (IQR) and 1.5 times IQR. Statistics are cut off by 
corresponding frequency values of triple the bin size because the cycle of less than triple 
bin size should be meaningless. All calculations are coded and performed in Matlab and 
Acycle software (Li et al., 2019). 
 
Sensitivity test of bin size selection 
In order to test whether our results were dependent or independent of bin size selection, 
we conducted a sensitivity test of bin size selection across a wide range (40–400 m.y.). 
The test addresses the influence of bin size selection on the secular age distribution 
patterns, the similarity in the fluctuations, and the potential dominant periodicities of 
these two rocks (Figs. 2 and 3 for 40 m.y. bins; Figs. S3 and S4 for bin sizes ranging 
from 80–400 m.y.). Ultimately, the sensitivity test supports the secular trend and 
spectral analysis are robust and argues that our periodicity results are independent of 
bin size selection, within a reasonable range, i.e., not too long to over-smooth the 
potential periodic signals of interest and not too short to introduce high-frequency 
signals that are either noise of real signals that may or may not be present in the whole 
records, particularly during older intervals not as densely sampled as the past 200 m.y.



 

 
Fig. S1 Procedure for updating the ages of carbonatite occurrences. 



 
 
Fig. S2 World map showing carbonatite and kimberlite. (A) Spatial distribution 
comparison of global carbonatites and kimberlites; (B) Spatial distribution comparison 
of dated carbonatites and global carbonatites; (C) Spatial distribution comparison of 
dated kimberlites and global kimberlites. Kimberlites data from Tappe et al. (2018). 
 



 
Fig. S3 The age frequency distribution of carbonatites and kimberlites with different 
bin sizes (A-F, from 80 m.y. to 400 m.y.). The estimated age distribution curves (solid 
lines; 1σ confidence intervals) were calculated using a locally-estimated scatterplot and 
bootstrap method in Acycle software (Li et al., 2019). The fitting power functions 
(dashed lines) were evaluated by r2. Insets are with logarithmic scales. Kimberlite data 
is from Tappe et al. (2018).   



 
Fig. S4. (A) Detrended carbonatite and kimberlite age distribution curves (z-score) 
according to different bin sizes compared to the detrended global mean ΔMgO of 
basalts (grey line, El Dien et al., 2019) and supercontinent/supercraton phases (gray 
bars; Mitchell et al., 2021). (B) Variation of the lead-lag relationship of detrended 
carbonatite and kimberlite age distribution curves with bin size selection in the different 
periods (cases with less than three data in any time period were not calculated). There 
is a significant change in the interval from 3.0–2.1Ga, while the results are stable within 
80 m.y. in other time intervals. (C) MTM power spectra of detrended carbonatite and 



kimberlite age distribution curves according to different bin sizes with confidence 
levels. (D) Violin plot of frequency above 90% confidence levels given by 10,000 
Monte Carlo Simulation combined with MTM for the different bin sizes of carbonatite 
and kimberlite age distribution curves in 1σ confidence intervals. 400 m.y. bin size has 
no data available. 



 
 
Fig. S5. Detrended carbonatite (A) and kimberlite (B) age distribution curves compare 
to the detrended global mean ΔMgO of basalts, during 200–0 Ma (raw data, bin size=10 
m.y.). MgO data is from El Dien et al., 2019. Detrend their secular trend using rLoess 
method. 



 
 
Fig. S6. Kimberlite occurrences taking into account surface preservation. (A) Surface 
rock ages through time as a proxy for long term erosion of cratons into which 
kimberlites are predominantly emplaced. (B) Kimberlites occurrences (200 Myr bins 
and log scale). Light blue, unweighted raw data; dark blue, inversely weighted 
according to surface preservation (A). Red dashed lines show averages of weighted 
occurrences indicating that the state shift increase ca. 1.2 Gyr ago remains statistically 
significant even when preservation is taken into account. The raw kimberlite database 
is from Tappe et al. (2018). 
  



 
 
Fig. S7. The stacked age records reflection of carbonatites and kimberlites occurred in 
the residual Archean cartons or Precambrian orogens. Insets are kimberlite age records 
plotted on logarithmic scales. Kimberlite database from Tappe et al. (2018). 
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