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Supplemental Text S1 — Corrections to the retro-wedge limits

To define the retro-wedge limits of the orogenic wedge (i.e. the deformation front), we use
the published geological map of South America (Gémez et al., 2019). However, we
repositioned the retro-wedge limits in (i) Peru to include the Contaya, Moa, and Shira ranges
based on previous studies (e.g. Dumont et al., 1991; Hermoza et al., 2005; Espurt et al., 2008)
and (ii) southern Argentina to include both the San Rafael block and the Agrio fold and thrust
belt based on previous studies (e.g. Folguera et al., 2007, 2009). In both cases, the retro-
wedge limits are positioned east of the limits defined in Gémez et al. (2019). Basement
uplifts are part of the Andean belt, reflect the accommodation of strain in the back-arc and are
integral parts of the orogen evolution (Jordan et al.1983). Including basement uplifts east of
the deformation front is also a way of accounting for the inherited crustal heterogeneity that
is thought to contribute to the evolution of the Andes (e.g. Kley et al., 1999), which we do not
discuss in the main text.

Supplemental Text S2

In the multilinear models described in the main text, adjusting both Y and Xz to X1 can reveal
the partial dependence of Y on Xz. This partial dependence can be represented in partial
regression plots (Cook and Weisberg, 1984), which we only show coefficients for (Fig. 2 E-
I). We also present the partial dependence as partial residual plots as shown in the main text
(Fig. 2 J-M), which do not adjust X2 for Xi and are, therefore, useful to detect nonlinear
behaviors (Larsen and McCleary, 1972). The regression trends presented in Fig. 2 J-M are
obtained from the coefficients of the partial regressions. These coefficients were obtained by
regressing the residuals of Y on X against the residuals of X2 on Xi.

Supplemental Text S3 — Erosion rate, topographic, and climatic data
From the 493 basins obtained from the Octopus database (https://doi.org/10.5194/essd-10-
2123-2018), we exclude (i) replicates (n=65), (ii) basins with drainage area greater than 10*
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km? and extending beyond the Andean deformation front (n = 39), (iii) basins with
abnormally weak lithology (n=9), glacial activity (n=1), or spurious erosion rates (n=5). The
same basins were used to obtain topographic and rainfall data. A drainage area threshold of
10° m? and 5 x 10° m? was used for the 90 m and 30 m resolution datasets, respectively.

In the orogen asymmetry analysis, we calculate the modal rainfall rates for the pro-
and retro-wedge areas. We used the same swath profiles shown in Fig. 1 to obtain a 100-km
wide rainfall rate data (red line in Fig. S1). A 40-bin histogram was then produced for each
swath-profile and the pixels divided into pro-wedge and retro-wedge areas based on the
position of the mean orogen peaks as described in the main text (Fig. S1). A smoothing
kernel was then fit to the histogram for each side of the orogen. From the smoothed kernel,
we obtain the peak, most prominent signal (see Fig. S2). A latitudinal plot of the inferred
rainfall rates highlights the orographic effects along and across strike of the Andes along with
the calculated orogenic wedge widths (Fig. S3). Rainfall rates, again, come from published
datasets (Karger et al., 2018). Topographic profiles and rainfall histograms used in this study
are provided as a Supplemental Dataset.

Lastly, subduction erosion could potentially affect the orogen asymmetries by
decreasing the length of the pro-wedge and lowering the asymmetry values used in our
analysis. Subduction erosion is on the order of 30 km over the last 20 Ma in the Central
Andes where we mostly do not use in the orogen asymmetry analysis (Laursen et al., 2002;
von Huene and Ranero, 2003; Clift and Hartley, 2007). Nonetheless, we applied a 30 km
summation on the total wedge width and pro wedge width for the segment between 17°S and
32°S, where subduction erosion is the greatest and over the entire dataset. These corrections
are imperceptible and do not change the statistics of our partial regression analysis (not
shown).



Supplemental Figures S1-S3:
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Figure S1: Example of a swath profile used in this study. The swath depicts the mean bathymetry and
elevation (solid black line), the minimum and maximum traces (i.e. thin black line) obtained from the
SRTM15+ dataset (Tozer et al., 2019). The mean elevation was smoothed with a 10 km moving mean before
finding the highest 1% elevations (pink triangles). The blue line shows the profile of the subducted Nazca slab
(with depth values in meters divided by 100 simply to represent the shape of the slab). The red line shows the
precipitation profile in mm/a (right Y-axis). The total distance of the figure is kept at 1000 km to allow an
intuitive comparison with the other profiles.
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Figure S2: Example of a rainfall rate histogram used to calculate modal precipitation. Kernel functions are
fit to the histograms individually for the pro-wedge (red) and retro-wedge rainfall rates (blue). All histograms
are provided as Supplemental Dataset.
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Figure S3: Latitudinal distribution of calculated modal rainfall rates (top) and wedge widths (bottom).
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