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❏ APPENDIX S1: DETAILED GEOLOGY OF THE CANTUNG AND

MACTUNG DEPOSITS

Cantung and Mactung are two tungsten skarn deposits located in the eastern part of the 
Selwyn Basin close to the Yukon–Northwest Territories border. Cantung and Mactung 
show similar mineralogy and paragenetic evolution (Elongo et al., 2020). The mineralogy 
in the two deposits consists of a prograde skarn stage evolving from garnet-pyroxene to 
pyroxene facies; and an overprinting retrograde alteration stage evolving from the 
amphibole-rich facies to the biotite-rich facies (Elongo et al., 2020). These main stages 
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are further overprinted by a sulfide stage followed by late quartz-sulfides veins. Scheelite 
is the main tungsten-bearing mineral and is either disseminated in the different facies or 
present in quartz and/or sulfides veins. 

  

➢  The Cantung deposit 

 The Cantung skarn deposit in the Northwest Territories is hosted in Upper Proterozoic to 
Upper Ordovician sedimentary rocks (Blusson, 1968). Four main sedimentary units from 
latest Precambrian to lower Cambrian age are present at Cantung: the “Lower Argillite'' 
of the Narchilla/Vampire formation, and the “Swiss-Cheese” Limestone, the “Ore” 
Limestone, and “Upper Argillite” of the Sekwi formation. The sedimentary sequence is 
folded into a recumbent anticline and was intruded by the Mine Stock pluton, a 
monzogranite (Mathieson and Clark, 1984) belonging to the Tungsten suite. The Mine 
Stock (98.2 ± 0.4 Ma from U-Pb in zircon; Rasmussen, 2013) is associated with contact 
metamorphism of the sedimentary sequence hosting the Cantung skarn (Mathieson and 
Clark, 1984). Dykes locally crosscutting the Mine Stock pluton consist of fine-grained 
monzogranite, aplitic to porphyry alkali feldspar granite, and kersantitic lamprophyres 
(Mathieson and Clark, 1984).  

The magmatic Mine Stock pluton is unlikely to be responsible for tungsten mineralization 
at Cantung. Despite its proximity to mineralization at Cantung, the Mine Stock pluton 
shows only local evidence of hydrothermal alteration (Mathieson and Clark, 1984) or 
fluid saturation. In contrast, dikes crosscutting the pluton are extensively altered 
suggesting that they could be associated with the fluid source or a fluid conduit. 
Furthermore, there is no evidence for extensive magmatic fractionation in the Mine Stock 
monzogranite, which is a common characteristic of magmatic sources for tungsten 
mineralization (Rasmussen et al., 2011). However, mineralization at Cantung ranges in 
age from ~103 to 96 Ma (Lentz, 2020), so while the upper portions of the Mine Stock 
pluton may not be the source of fluids and tungsten, magma, fluid and metals were likely 
derived from the same unexposed magma body at depth (Rasmussen et al., 2011). 

 

➢   The Mactung deposit 

 
The Mactung skarn deposit in Yukon is hosted in an isoclinally folded succession of 
sedimentary units ranging in age from latest Precambrian to late Ordovician (Dick and 
Hodgson, 1982). From older to younger, these units correspond to the Vampire formation 
(locally unit 1), Sekwi formation (locally unit 2B), Hess River formation (locally unit 
3C), the Rabbitkettle formation (locally units 3D, 3E, 3F, 3G and 3H) and the Duo Lake 
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formation (locally unit 4 ; Gebru, 2017 ; Fischer et al., 2018). Tungsten mineralization at 
Mactung occurs in two exoskarn orebodies hosted in the carbonate rich units within 
Sekwi and Rabbitkettle formations (locally units 2B, 3D, 3E and 3F ; Dick and Hodgson, 
1982; Gebru, 2017; Fischer et al., 2018). 

Two biotite quartz monzonite plutons (and related porphyritic, aplitic and pegmatitic 
dykes) belonging to the Tungsten suite are spatially associated with the Mactung deposit: 
the Cirque Lake Stock (also called Mactung North Pluton) and the Rockslide Mountain 
Stock (also called Mactung South Pluton ; Atkinson and Baker, 1986 ; Gebru, 2017). The 
Cirque Lake Stock was originally proposed as the source of the mineralizing fluids 
because of its close spatial association with the Mactung mineralization. However, like at 
Cantung, the causal relationship between the pluton and the mineralization was 
challenged because of the lack of mineralization in the carbonate units at the contact with 
the pluton, the weak hydrothermal alteration around the pluton, and the lack of 
correlation between veining and alteration in the pluton and mineralized locations 
(Atkinson and Baker, 1986). Recent studies have shown that the skarn mineralization 
(97.5 ± 0.5 Ma from Re–Os in molybdenite, Selby et al., 2003) is broadly coeval with the 
crystallization of the Cirque Lake Stock and the Rockslide Mountain Stock (97.6 ± 0.2 
Ma from U-Pb in zircon, Gebru, 2017). As at Cantung, the timing of the exposed granitic 
plutons and skarn mineralization overlap closely. 

 

❏    APPENDIX S2: SAMPLING 

Whole rock samples representative of the local lithologies at Cantung and Mactung were 
selected to determine their Samarium-Neodymium isotope composition. Whole rock 
samples from Cantung include two granitoids samples (Mine Stock pluton), one sample 
of aplitic dyke, one sample of lamprophyre dyke, one non-skarnified limestone sample 
(Swiss-Cheese Limestone), and two argillite samples (Lower Argillite and Upper 
Argillite). Whole rock samples from Mactung include two granitoids samples (Mactung 
North pluton and Mactung South pluton) and three argillite samples (Unit 1). Further 
details about the samples are presented in the Online Resource 1. 

Scheelite from Cantung include two samples from an early stage quartz vein cutting 
across the Mine stock pluton, two samples from argillite units (Lower Argillite and Upper 
Argillite), one sample from the garnet-pyroxene skarn (hosted in the Ore Limestone), one 
sample from the pyroxene skarn (hosted in the Swiss-Cheese Limestone), one sample 
from the amphibole-rich facies (hosted in the Swiss-Cheese Limestone) and one sample 
from the biotite-rich facies (hosted in the Ore Limestone). Scheelite from Mactung 
include one sample from argillite (hosted in Unit 1), one sample from the garnet-
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pyroxene skarn (hosted in Unit 3E), one sample from the pyroxene skarn (hosted in Unit 
3E) and one sample from the amphibole-rich facies (hosted in Unit 3F). 

  

❏ APPENDIX S3: DETAILED METHODS 

 

➢   Whole rock composition 

The mineralogy and mineral zonation of samples was determined in thin sections through 
transmitted and reflected light microscopy and Scanning Electron Microscopy (SEM). 
Unaltered samples were selected for whole rock analyses and ground in a shatter box 
using an alumina mill. 

Whole rock Samarium-Neodymium isotope compositions were determined through mass 
spectrometry of Sm and Nd fractions separated and measured at the Crustal Re-Os 
Geochronology Laboratory and CCIM ICPMS facilities at the University of Alberta. 
Sample powders were weighed and spiked with a known amount of mixed 150Nd-149Sm 
tracer solution calibrated directly against the Caltech mixed Sm/Nd normal described by 
Wasserburg et al. (1981). Samarium and neodymium fractions were separated following 
the procedures described in Creaser et al. (1997) and Unterschutz et al. (2002).  

The purified Sm and Nd fractions were analyzed for isotopic composition and 
concentration using a Nu Plasma™ multi-collector inductively coupled plasma mass 
spectrometer (MC-ICP-MS) at CCIM-ICPMS facility at the University of Alberta. All Nd 
isotope ratios were normalized for variable mass fractionation to a value of 146Nd / 144Nd 
= 0.7219 using the exponential fractionation law. The 143Nd / 144Nd ratios presented here 
are relative to a value of 0.511850 for the La Jolla Nd isotopic standard, monitored by use 
of an in-house Alfa Nd isotopic standard. The value of 143Nd / 144Nd obtained for the 
JNdi-1 standard following this procedure was 0.512109 ± 8 (2SE) compared to a known 
value 0.512107 ± 7 (Tanaka et al., 2000). Sm isotopic abundances were normalized for 
variable mass fractionation to a value of 1.17537 for 152Sm / 154Sm also using the 
exponential law.  The Nd isotope standard “Shin Etsu: J-Ndi-1” (Tanaka et al., 2000) was 
also analyzed using the same procedures.  Using the mixed 150Nd-149Sm tracer, the 
measured 147Sm / 144Nd ratios for the synthetic BCR-1 standard range from 0.1380 to 
0.1382, suggesting reproducibility for 147Sm / 144Nd of ~ ± 0.1% for real rock powders.  

➢   Scheelite composition 

Chemical homogeneity/heterogeneity in scheelite was tested in thin section through 
cathodoluminescence imaging at the Scanning Electron Microscope Laboratory at the 
University of Alberta using a Zeiss EVO LS15 Scanning Electron Microscope and 
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through point mode LA-ICPMS transects perpendicular to growth zones in individual 
grains. 

The Samarium-Neodymium isotope compositions of scheelite were determined through 
solution MC-ICPMS of scheelite separates and through in-situ laser ablation split stream 
analyses (LASS) ICPMS of thin sections and grain mounts. These two procedures were 
combined to (1) verify the accuracy of the results and (2) to evaluate compositions in 
samples where the concentrations of Sm or Nd were too low to obtain meaningful results 
through LASS. 

For solution MC-ICPMS, scheelite grains were separated at the SELFRAG laboratory of 
the Canadian Centre for Isotopic Microanalysis (CCIM) at the University of Alberta, then 
handpicked under a binocular microscope under ultraviolet light. Scheelite powders were 
obtained using an agate mortar. Scheelite dissolution and Sm and Nd fractions separation 
were performed at the Crustal Re-Os Geochronology Laboratory of the University of 
Alberta following procedures described by Kempe et al. (2001).  

Only four scheelite samples were analyzed via LASS ICP MS: one sample from the 
Mactung pyroxene skarn, one from the Cantung quartz vein, one from Mactung argillites 
and one from Cantung argillites.  Simultaneous Sm-Nd isotope and trace element (Sm 
and Nd) measurements were carried out in the Arctic Resources Laboratory at the 
University of Alberta (Luo et al., 2019). The scheelite samples were ablated using the 
LASS technique (Yuan et al., 2008; Xie et al. 2008; Fisher et al., 2014). Samples were 
ablated using a 193 nm Resolution Excimer ArF laser equipped with a Laurin-technic S-
155 two-volume ablation cell. Analyses were performed using a laser fluence of 6 J/cm2 
and a repetition rate of 10 Hz. Analysis time consisted of 60 seconds of background 
followed by 70 seconds of ablation and then 40 seconds of sample washout. The carrier 
gas was a mixture of ~1.6 L/min Ar and 14 ml/min N2, which entered tangentially from 
the top of the S-155 ablation cell funnel and ~800 ml/min He entering from the side of 
the cell. This yielded a pressure in the ablation cell of ~7.5 KPa. The ablated sample 
aerosol, He, N2 and Ar mixture was then split after the laser cell using a Y-piece, 
diverting the ablation product to a Thermo Neptune Plus using multiple Faraday detectors 
with 1011 Ω amplifiers operating in static collection mode (for Sm-Nd) and a Thermo 
Element-XR 2 mass spectrometer using a single secondary electron multiplier detector in 
peak hopping mode (for trace elements). The length of tubing was equalized such that the 
ablated sample aerosol arrives simultaneously at both mass spectrometers. Calibration 
was performed using NIST SRM 612 in conjunction with internal standardization using 
isotope 43Ca. The results of the measurements of secondary standards (e.g., NIST614) 
agree with the reference values within relative uncertainties of typically 5–10% or better 
at the 95% confidence level. 
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The present-day CHUR values used for the initial εNd (εNdi) calculation are 
143Nd/144Nd=0.512638 and 147Sm/144Nd=0.1967. 

  

❏ APPENDIX S4: DETAILS FOR DATA PRESENTED IN FIGURES  

 

 
Supplementary Figure S1. εNd at time of formation (t) for scheelite, and local lithologies 
in the Canadian Tungsten Belt (Blow-up of Figure 3, focusing on data acquired in this 
study). Squares and circles are data acquired in this study with squares representing Nd 
isotopic compositions of scheelite and circles representing neodymium isotopic 
compositions of local lithologies associated with the Cantung and Mactung deposits. 
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 ➢   Data presented in Figure 1: 

 
1/Basement rocks and faults are from Whitmeyer and Karlstrom (2007) (<2.0 Ga orogens 
and arcs ,1.9-1.8 Ga reworked Archean crust, and >2.5 Ga Archean crust) and from 
Esteve et al. (2020) (Mackenzie craton and Canadian shield). 
 
2/εNd data are from Morris and Creaser (2008) for the Canadian Cordillera and from 
Chapman et al. (2017) for the US Cordillera. 
 
3/Tungsten deposits and classification are from Sinclair et al. (2011) and Sinclair et al. 
(2014). 
  

➢   Compiled data presented in Figure 3: 

Archean and Early Proterozoic crust fields are from Villeneuve et al. (1993), Grenville-
age crust field is from Garzione et al (1997) and references therein. The source data from 
Figure 3 are presented in the Online Resource 1. 
  

 Igneous / meta-igneous units: 
1/Lamprophyre data include: lamprophyres from the Scheelite Dome (Mair et al., 2011), 
from near the Roy pluton, near the Pelly River pluton, and from the Cantung deposit 
(Rasmussen, 2013); 
 
2/ Felsic (meta-)igneous rocks data include: Bonnet Plume River intrusions (Northeastern 
Yukon) (Thorkelson et al., 2001), Fort Simpson magnetic High intrusions (Northeastern 
BC & Southern Yukon) (Villeneuve et al., 1991), and intrusions and orthogneiss from the 
Taltson, Buffalo Head, Chinchaga and Ksituan domains (Northern Alberta) (Theriault 
and Ross, 1991); 
 
3/ Mafic (meta-)igneous rocks data include: Archean/Early Proterozoic metagabbro from 
the Buffalo Head domain (Northern Alberta) (Theriault and Ross, 1991), Neoproterozoic 
basalts/sills from Little Dal basalts and Tsezotene sills (Mackenzie Mtns, NWT) (Dudas 
and Lustwerk, 1997), and recent to Tertiary basalts from the Iskut-Unuk rivers volcanic 
field (SW Yukon) (Cousens and Bevier, 1995), from Watson Lake (Abraham et al., 
2001), and from the Mount Skukum Volcanic Complex and the Bennett Lake Volcanic 
Complex (Morris and Creaser, 2003). 
  

 Sedimentary / meta-sedimentary units: 
1/ Paleozoic metasediments data include data from Garzione et al. (1997) (Yukon and 
Northwest Territories) and from Cousens (2007) (Eastern Yukon); 
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2/ Windermere Supergroup (Yukon and NWT) data are from Garzione et al. (1997); 
 
3/Mackenzie Mountains Supergroup (NWT) data are from Rainbird et al. (1997); 
4/Wernecke Supergroup (Yukon) data are from Thorkelson et al. (2005). 
 
  

➢    Data from this study presented in Figure 3 and in Supplementary Figure 1: 

Detailed data for this study are presented in the Online Resource 1. 
  

 Scheelite data 
Scheelite from Cantung are from the garnet-pyroxene skarn, the pyroxene skarn, the 
amphibole-rich facies, the biotite-rich facies, argillite, and a quartz vein in Mine Stock 
pluton. 
Scheelite from Mactung are from the garnet-pyroxene skarn, the pyroxene skarn, the 
amphibole-rich facies, and argillite. 
Details about these different facies can be found in Elongo et al. (2020). 
  

 Whole rock data: 
1/ Lamprophyre: Cretaceous lamprophyre from the Cantung deposit; 
 
2/ Felsic intrusions data include data from the Cretaceous Mine Stock pluton and aplite 
from Cantung, and from the Cretaceous Mactung North and South plutons; 
 
3/ Metasediments data include data from the Cambrian Swiss-Cheese limestone and 
argillites from Cantung and the Cambrian argillites from Mactung. 
 

➢   Data presented in Figure 4: 

The source data from Figure 4 are presented in the Online Resource 2. 
The oxidation state of the plutons was assessed based on the log10(Fe2O3/FeO) vs FeOtotal 

classification scheme from Blevin (2004). Iron oxides and zircon saturation temperatures 
(ZST) data are taken from Rasmussen (2013) (NWT and Yukon, Canada), Hart et al. 
(2004), Bateman et al. (1965) and Chapman et al. (2021) (Western USA and Mexico). 
Chapman et al. (2021) data are a compilation of data from G. Haxel (unpublished), Shaw 
and Guilbert (1990), Force (1997), Keith and Reynolds (1980), Best et al. (1974), Lee et 
al. (1981), Lee and Van Loenen (1971), and from John and Wooden (1990). 
Some units/plutons compiled by Chapman et al. (2021) are represented by several 
samples with different iron oxides content and  different ZST. For these units/plutons, 
samples with the same oxidation state were lumped together and an average ZST was 
given for each oxidation state. For each of these units/plutons, the percentage represented 
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by samples with the same oxidation state is also given and presented as a partitioned 
circle in Figure 4. 
  
Zircon saturation temperatures (Watson and Harrison, 1983) presented in these studies 
are calculated from whole rock compositions based on the concentrations of zirconium, 
silica, aluminum and alkalies in the rock. 
Zircon solubility is a function of temperature and composition of melt as defined by the 
following equation:  
 
ln DZr,zircon/melt = {-3.8 - [0.85(M-1)]} + 12900/T  (Watson and Harrison, 1983) 
 
where DZr,zircon/melt is the ratio of Zr concentration in zircon (~496000 ppm) to that in the 
melt, M is the cation ratio (Na+K+2ꞏCa)/(AlꞏSi) accounting for dependence of zircon 
solubility on SiO2 and peraluminosity of the melt (Miller et al., 2003), and T is the 
temperature (Kelvins). Rearranging the equation to yield T provides the zircon saturation 
temperature geothermometer equation:  TZr=12900/[2.95 + 0.85M  + ln(496000/Zrmelt)]. 
Zircon saturation temperatures can be used to estimate initial melt temperatures; 
however, these estimates are influenced by the inherited zircon content of the melt 
(Miller et al., 2003). The zircon saturation temperature geothermometer provides a good 
estimate of initial magma temperature at the source for plutons with abundant inherited 
zircon and provides an underestimate initial temperature for plutons poor in inherited 
zircon (Miller et al., 2003). Thus, it provides minimum estimates of initial temperature if 
the magma was undersaturated, but maximum estimates of initial temperature if the 
magma was saturated (Miller et al., 2003). 
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