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MATERIALS AND METHODS 

We report detrital zircon U-Pb ages from two loess sites for the first time: Ledu 

and Jiaxian (Fig. 1). The Ledu site is in the western CLP (36°25′30.569″ N, 

102°34′36.16″ E). This section is 36.2 m long and its age model is based on high 

resolution luminescence dating(Li et al., 2020). Detrital zircon samples were taken at 

0.55, 1.5, 8.2, 12.9, 17.4, 27.55, 32.55 m, corresponding to 1.3, 14.18, 25.53, 34.26, 

49.78, 73.74 and 89.69 ka. The Jiaxian site (38°16′25″ N, 110°5′25″ E) is at the 

northeastern CLP and its age model (ca. 8.3–2.2 Ma) was established based on 

magnetostratigraphy(Qiang et al., 2001). We collected one early Pleistocene loess 

sample (ca. 2.4 Ma) from the upper Jiaxian section. We also collected one new sample 

from modern fluvial sand of the Huangshui River, which is close to the Ledu site (Fig. 

1) for comparison. The description, sample name and original sample ID used in this 

study are provided in supplementary Table S1. 

All new zircon U-Pb ages were measured at the laboratory of Earth Surface 

Process and Environment at the Nanjing University except the sample from Jiaxian, 

which was measured at the Arizona LaserChron Center at the University of Arizona. 

The analytical methods for the samples analyzed at Nanjing University followed Zhang 

et al. (2018), whereas the sample analyzed at the University of Arizona followed Pullen 

et al. (2014); Pullen et al. (2018) and we briefly describe the procedure here. For the 

Laboratory in the Nanjing University, the analytical instruments are a New Wave 193‐

nm laser ablation system and Agilent 7700x inductively coupled plasma mass 

spectrometry (ICP‐MS). The laser beam diameter was set to 25 μm, with a 10‐Hz 



repetition rate and energy of 2-3 J/cm2. Zircon 91500(Wiedenbeck et al., 1995), GJ‐

1(Jackson et al., 2004) and NIST 610(Pearce et al., 1997) were used as the reference 

material. For the Arizona laboratory, the analytical instruments are Teledyne Photon 

Machines G2 solid state ArF excimer laser ablation system coupled to a Thermo Fisher 

Scientific ELEMENT 2 single collector inductively coupled plasma mass spectrometer. 

The laser beam diameter was set to 12 μm, with a 7‐Hz repetition rate and energy of 

10.16 J/cm2. Zircon FC-1(Black et al., 2003), R33(Black et al., 2004) and SL(Gehrels 

et al., 2008) were used as the reference material. 

Common Pb was corrected following the method of Andersen (2002) for samples 

measured at Nanjing University. The treatment of discordant, reverse discordant, and 

high-error analyses was the same for all new data. The uncertainties are reported at the 

1σ level, the “best age” for each analysis used in plotting and interpretations was from 

206Pb/238U for <1000 Ma and from 206Pb/207Pb for >1000 Ma ages. For ages younger 

than 1000 Ma, the discordance was defined as (207Pb/235U-206Pb/238U)/207Pb/235U*100; 

for ages older than 1000 Ma, the discordance was defined as (207Pb/206Pb-

206Pb/238U)/207Pb/206Pb*100. Analyses with >15% discordance and with >10% reverse 

discordance were not included, same as our previous studies(Nie et al., 2015; Nie et al., 

2018). 

In order to constrain the potential sources and relative contribution to Loess-

Paleosol sequence, we used the non-matrix multi-dimensional scaling (MDS) statistical 

technique(Vermeesch, 2013; Saylor et al., 2018) and the detrital zircon DZ-Mix 

model(Sundell and Saylor, 2017) to help analysis. Non-matrix MDS technique is based 



on Kuiper or Kolmogorov-Smirnov statistical method and calculates MDS map 

distance between two points against the corresponding calculated dissimilarity, Kuiper 

statistical is more sensitive in the tails of distributions than previously used 

Kolmogorov-Smirnov statistic(Kuiper, 1960; Vermeesch, 2018). DZ-Mix model is 

based on the inverse Monte Carlo method to determine mixing proportions of source 

sample contributions. We also show the zircon U-Pb data in probability density plots 

(PDP)(Brandon, 1996), kernel density estimation (KDE)(Vermeesch, 2012), and 

histogram diagrams for visual comparison, the optimal kernel bandwidth of each 

sample are calculated from Botev et al. (2010). 

 



 

Figure S1. Visual comparison of detrital zircon U-Pb ages between Jiaxian and 

Gonghai. The black and blue lines are normalized probability density plots (PDP) 

and Kernel Density Estimation plots (KDE), respectively. The open rectangles are 

age histograms. The laser beam used in Jiaxian and Gonghai is 12 μm and 30 μm, 

respectively. 



 

Figure S2. Non-metric multi-dimensional scaling (MDS) plot of zircon U-Pb age data 

of the Quaternary loess sequences on the Loess Plateau and comparison with potential 

sources. Brown, gray, pink, and red dots represent central-western, eastern, northeastern 

CLP samples, and sieved grain size samples in Chaona site (Nie et al., 2018), 

respectively. Dark blue dots are potential sources samples. Solid lines mark the closest 

neighbors and dashed lines the second closest neighbors. The three black ovals depict 

the clustered samples. We note that for Chana site, zircons less than 20 μm (represented 

by CN<20μm) have similar age pattern as zircons larger than 20 μm (represented by 

CN>20μm). This pattern demonstrate that grain size effect is minimal when compared 

with spatially variable provenance. 

 



 

Figure S3. The relative contribution of each potential sources to northeastern CLP. 

HS+Qilian – Huangshui River sediment and Qilian Shan Piedmont sediment; 

XNB – Xining Basin sediment; EMU+MYR – Eastern Mu Us desert and Middle 

Yellow River sediment; WMU+UYR – Western Mu Us desert and Upper Yellow 

River sediment; QB – Qaidam Basin sediment; Desert – Tengger desert, Badain 

Jaran desert and Gobi-Altay sediment. 

 



 

 

Figure S4. The relative contribution of each potential sources to central-western 

CLP. HS+Qilian – Huangshui River sediment and Qilian Shan Piedmont sediment; 

XNB – Xining Basin sediment; EMU+MYR – Eastern Mu Us desert and Middle 

Yellow River sediment; WMU+UYR – Western Mu Us desert and Upper Yellow 

River sediment; QB – Qaidam Basin sediment; Desert – Tengger desert, Badain 

Jaran desert and Gobi-Altay sediment. 

 

 



 
 

Figure S5. The relative contribution of each potential sources to eastern CLP. 

HS+Qilian – Huangshui River sediment and Qilian Shan Piedmont sediment; 

XNB – Xining Basin sediment; EMU+MYR – Eastern Mu Us desert and Middle 

Yellow River sediment; WMU+UYR – Western Mu Us desert and Upper Yellow 

River sediment; QB – Qaidam Basin sediment; Desert – Tengger desert, Badain 

Jaran desert and Gobi-Altay sediment. 

  



TABLE S1: LOCATION OF SAMPLES USED FOR ZIRCON U-PB 

PROVENANCE ANALYSES IN THIS STUDY. REFERENCES ARE SHOWN 

FOR PREVIOUSLY PUBLISHED DATA. OTHER SAMPLES WERE DATED 

AS PART OF THIS WORK AND SHOWN IN TABLE S3. 

 
 

TABLE S2: INVERSE MONTE CARLO MODELS RECONSTRUCTED THE 

RELATIVE CONTRIBUTION TO CLP. 
 

Central-western CLP Eastern CLP Northeastern CLP  
Contribution 

(%) 
Standard 
deviation 

(%) 

Contribution 
(%) 

Standard 
deviation 

(%) 

Contribution 
(%) 

Standard 
deviation 

(%) 
HS+Qilian 73.57 11.3 10.72 9.01 1.4 1.89 

XNB 8.01 7.27 4.08 3.74 1.9 2.86 
MYR+EMU 2.23 1.81 14.04 4.62 91.07 4.31 
WMU+UYR 8.65 7.66 52.28 14.66 2.21 2.79 

QB 4.26 4.25 7.41 6.39 1.6 1.8 
Desert 3.28 3.11 11.47 5.68 1.82 1.98 

 
 

TABLE S3: U-PB ZIRCON ANALYTICAL DATA FOR THE LEDU AND 

JIAXIAN LOESS SITES PRESENTED IN THIS STUDY. 

 

TABLE S4: U-PB ZIRCON DATA FOR ALL LOESS SITES AND POTENTIAL 

SOURCES PRESENTED IN THIS STUDY. 
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