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I. Cl-based mass balance for hot spring contribution to Rio Madre de Dios

To determine the role of hot springs in the regional SO+ budget of the Madre de Dios
watershed, a chloride based mass balance was used:

[ CI ] downstream hot springs = fhot springs| Cl Tnotsprings + fupstream hotsprings[ C1 Jupstream hotsprings

and fhot springs T fupstream hotsprings = 1,
where f is the fractional contribution to discharge. In May 2019 the fractional contribution of hot
springs to riverine discharge was 0.01% and in March 2019, the contribution was undetectable.
Given their low contribution to discharge and low SO4? (~6-10 mg/L, compared to 8-12 mg/L in
the Rio Alto Madre de Dios), we conclude that the hot springs do not have a significant impact

on the regional SO+ budget.

I1. Explanations for evolution of 8'80so4 across the Madre de Dios floodplain

Figure 3 illustrates the oxygen isotope composition of riverine SO4>* from mountain to
floodplain. In all sampling campaigns, §'30so4 increased across the floodplain, i.e., from the
foothills of the Andes (~2000 m median catchment elevation, site D in Fig. 1B) to Los Amigos
(~450 m median catchment elevation, site E in Fig. 1B). The magnitude of these floodplain

increases is annotated on Fig. 3B for each season.
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To explore possible causes of the observed changes in §'80so4 across the floodplain, we
consider three scenarios (main text Fig. 3C-E): (1) mixing of SO4* derived from oxidative
weathering of pyrite (OWP) and evaporite weathering, (2) reduction of SO4* and removal via a
reduced phase (HzS or secondary sulfide mineral) and (3) reduction and re-oxidation of SO4> at
lower elevation, similar to the mechanism invoked to explain SO4%" isotope composition in lower
reaches of the Amazon River by Longinelli and Edmond, 1983.

In the first case (Figure 3C), weathering source mixing calculations followed a two
endmember mixing model, with 8'80so4= 10-20%o for the evaporite weathering endmember
(Claypool et. al, 1980):

880504, River = 880504, oWpFs04,0wp + 880504, EvaporiteFs04,Evaporite,
where Fso4 is the fraction of SO4% from OWP or evaporite weathering.

In the second case (Figure 3D), Rayleigh fractionation is used to model the isotopic
impacts of sulfate reduction and removal as a reduced phase. A range of separation constants are
used from the literature (o0 = 0.990, Mandernack et al., 2003; oo = 0.995 and o = 0.996, Turchyn
et al., 2013).

In the third case (Figure 3E), calculations of the effect of reduction and re-oxidation were
carried out as follows: we calculated a theoretical 830504 Floodplain predicted Value using a floodplain
water isotope composition (i.e., assuming all SO4?" is reduced and reoxidized in the floodplain).
The fractionation factor between SO4>- and source water oxygen isotopes was assumed to be 9%o
(an average literature value from Taylor & Wheeler, 1993 and Van Stempvoort & Krouse, 1993;
e.g., within the range in Fig. 2B). The fraction of oxygen in sulfate from atmospheric O, was

varied from 10-20%.
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The fraction of reduction and re-oxidation needed to explain the observed change in
8'30s04 from the foothills of the Andes to the floodplain was calculated as:

Fre-oxidation = (8'30s04, Floodplain, measured = &' 30804, Foothills, measured)/(880s04, Floodplain,predicted -

880504, Foothills, measured),
where Fre-oxidation 18 the fraction of the SO4>- pool that was reduced and re-oxidized, §'3Osoa,
Floodplain, measured 1S the measured oxygen isotope composition of the Rio Madre de Dios (site E, Fig
1B) 880504, Floodplain, predicted is @ predicted oxygen isotope composition that would result from
total re-oxidation of SO4?" with a floodplain source water isotope composition, and 8'#Oso4,

Foothills, measured 1S the measured oxygen isotope composition of SO4%" as it leaves the Andes

mountains and enters the floodplain (site D, Fig 1B).
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