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5 

I. Cl-based mass balance for hot spring contribution to Rio Madre de Dios6 

To determine the role of hot springs in the regional SO42- budget of the Madre de Dios 7 

watershed, a chloride based mass balance was used: 8 

[Cl-]downstream hot springs = fhot springs[Cl-]hotsprings + fupstream hotsprings[Cl-]upstream hotsprings9 

and fhot springs + fupstream hotsprings = 1, 10 

where f is the fractional contribution to discharge. In May 2019 the fractional contribution of hot 11 

springs to riverine discharge was 0.01% and in March 2019, the contribution was undetectable. 12 

Given their low contribution to discharge and low SO42- (~6-10 mg/L, compared to 8-12 mg/L in 13 

the Rio Alto Madre de Dios), we conclude that the hot springs do not have a significant impact 14 

on the regional SO42- budget. 15 

16 

II. Explanations for evolution of d18OSO4 across the Madre de Dios floodplain17 

Figure 3 illustrates the oxygen isotope composition of riverine SO42- from mountain to 18 

floodplain. In all sampling campaigns, d18OSO4 increased across the floodplain, i.e., from the 19 

foothills of the Andes (~2000 m median catchment elevation, site D in Fig. 1B) to Los Amigos 20 

(~450 m median catchment elevation, site E in Fig. 1B). The magnitude of these floodplain 21 

increases is annotated on Fig. 3B for each season. 22 
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To explore possible causes of the observed changes in d18OSO4 across the floodplain, we 1 

consider three scenarios (main text Fig. 3C-E): (1) mixing of SO42- derived from oxidative 2 

weathering of pyrite (OWP) and evaporite weathering, (2) reduction of SO42- and removal via a 3 

reduced phase (H2S or secondary sulfide mineral) and (3) reduction and re-oxidation of SO42- at 4 

lower elevation, similar to the mechanism invoked to explain SO42- isotope composition in lower 5 

reaches of the Amazon River by Longinelli and Edmond, 1983. 6 

 In the first case (Figure 3C), weathering source mixing calculations followed a two 7 

endmember mixing model, with d18OSO4 = 10-20‰ for the evaporite weathering endmember 8 

(Claypool et. al, 1980): 9 

d18OSO4, River = d18OSO4, OWPFSO4,OWP + d18OSO4, EvaporiteFSO4,Evaporite, 10 

where FSO4 is the fraction of SO42- from OWP or evaporite weathering.  11 

 In the second case (Figure 3D), Rayleigh fractionation is used to model the isotopic 12 

impacts of sulfate reduction and removal as a reduced phase. A range of separation constants are 13 

used from the literature (a = 0.990, Mandernack et al., 2003; a = 0.995 and a = 0.996, Turchyn 14 

et al., 2013).  15 

 In the third case (Figure 3E), calculations of the effect of reduction and re-oxidation were 16 

carried out as follows: we calculated a theoretical d18OSO4,Floodplain,predicted value using a floodplain 17 

water isotope composition (i.e., assuming all SO42- is reduced and reoxidized in the floodplain). 18 

The fractionation factor between SO42- and source water oxygen isotopes was assumed to be 9‰ 19 

(an average literature value from Taylor & Wheeler, 1993 and Van Stempvoort & Krouse, 1993; 20 

e.g., within the range in Fig. 2B). The fraction of oxygen in sulfate from atmospheric O2 was 21 

varied from 10-20%.  22 



The fraction of reduction and re-oxidation needed to explain the observed change in 1 

d18OSO4 from the foothills of the Andes to the floodplain was calculated as: 2 

Fre-oxidation = (d18OSO4, Floodplain, measured - d18OSO4, Foothills, measured)/(d18OSO4, Floodplain,predicted - 3 

d18OSO4, Foothills, measured), 4 

where Fre-oxidation is the fraction of the SO42- pool that was reduced and re-oxidized, d18OSO4, 5 

Floodplain, measured is the measured oxygen isotope composition of the Rio Madre de Dios (site E, Fig 6 

1B) d18OSO4, Floodplain, predicted is a predicted oxygen isotope composition that would result from 7 

total re-oxidation of SO42- with a floodplain source water isotope composition, and d18OSO4, 8 

Foothills, measured is the measured oxygen isotope composition of SO42- as it leaves the Andes 9 

mountains and enters the floodplain (site D, Fig 1B).  10 
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