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Supplemental File 1

A REVIEW OF SOME PREVIOUS STUDIES AND
STATISTICAL CONCEPTS

The Binomial Distribution to Statistically Model Point Counts

Point counts have often been studied using statistics, but we have not seen an equivalent
treatment for line counts, and we do not attempt one here. In the paper, we only use statistical
approaches to study point counts.

The binomial distribution describes a Bernoulli process, in which there are two possible
outcomes for each trial: success or failure. For example, we randomly draw balls from a bag
which contains blue and red balls, and drawing a blue ball is a ‘success’, with probability p,
which is of course the proportion of blue balls. The selected ball is placed back in the bag and
the balls are mixed after each draw, so each draw is independent. The number of trials, N, is
fixed and known in advance, and the number of successes is discrete. If (i) a rock or deposit
contains only two components, (ii) the point counting grid is larger than the largest
component, and (iii) the rock or deposit is homogenous, then point counting is a Bernouilli
samplir}g process (Neilson and Brockman, 1977; Weltje, 2002) and the binomial distribution
applies .

The binomial distribution is a discrete function, unlike the normal distribution which is
continuous. The binomial population mean is L = Np and its population standard deviation is

Ou =/ Np(1 — p), in terms of the number of successes (Taylor, 1997; Howarth, 1998). For
example, suppose that we count N = 400 points in a homogeneous thin section which contains
blue and red particles and the true proportion of blue particles is p = 0.5. If we count these
400 points once, we will find x blue particles, somewhere close to 200, but probably not

" In some cases, the binomial distribution may not be a relevant statistical model for point counting, for example
if the thin section, specimen or area under study is not internally homogeneous, or if the observations are not
independent from each other, as would be the case if the same grain is counted twice (Weltje, 2002), or if the
rock has some structure, like in a gneiss. However, the following discussion will assume that the binomial
distribution applies. A generalized version of the binomial distribution, where more than two components are
present, is the multinomial distribution (Howarth, 1998; Weltje, 2002).



exactly 200. If we repeat the count many times at different places on the thin section, we
expect to count an average of Np = 200 blue particles if the method is accurate. According to
statistical theory, the standard deviation of the measurements, s,,, should be equal to that of

the population (Weltje, 2002): 6,, = V400 * 0.5 * 0.5 = 10 blue particles.

If we instead express the population standard deviation as a proportion of blue particles, we

divide it by N and the formula becomes &y.qp = ’%. In our example, G, on the

0.5%0.5

proportion of blue particles would be = 0.025, and the relative standard deviation

would be 0.025/0.5 = 5%. Should we actually repeat the experiment a very large number of
times, the measured standard deviation s,,, should equal G,.,. We see that G, and
therefore that the predicted counting error (assumed to be equivalent to precision in this line
of reasoning), depends on N and p, with o,,,, decreasing with the square root of N. This is the
basis of the “error chart” of van der Plas and Tobi (1965), which plots 26,,,, values, absolute
or relative (Fig. 2b in the paper). Continuing with our example, we use N = 400 and p = 0.5
on the chart and read absolute 26,,,, halfway between the continuous lines for 4% (0.04) and
6% (0.06), i.e. about 5% (0.05). Or if we are interested in the relative value of 26,,,,, we find
that the dashed line for 10% relative passes directly through our coordinates. Implicit in
constructing this chart is the assumption that the binomial distribution can be approximated
with a normal distribution so that the standard deviation can be used to build confidence
intervals for a binomial distribution.

Confidence Intervals for a Binomial Proportion

A confidence interval is “an interval of plausible values that a population parameter might
assume, based on the value of a statistic which estimates that parameter” (Davis, 2002). Here
the population parameter of interest is the actual proportion p of a constituent and the statistic
is the measured proportion p = x/N from componentry methods. The confidence interval is
built so that there is a specified probability (confidence level), such as 90% or 95%, that the
true value falls within the interval. The significance level (or desired level of risk), o, is
defined as 1 minus the confidence level.

If the normal distribution is a good approximation of the binomial distribution, then
confidence intervals for point counting and other componentry methods can be estimated
using the standardized normal distribution (Vollset, 1993). For example, the 26,,,, values in
the van der Plas and Tobi (1965) chart would correspond to 95.45% confidence intervals. In
other words, for a certain point count, there is a 95.45% chance that the true proportion of a
component lies within 26,,,, on each side of the counted proportion p. In generalized form,
the width of the confidence interval for a proportion is Z G, on either side of the measured
proportion, where the Z-score corresponds to a specific cumulative probability for the
standardized normal distribution (Vollset, 1993; Howarth, 1998). These scores can be found
in tables within statistical textbooks (e.g. Davis, 2002). For example, for a 95.0% confidence
level, oo = 0.05, but this is a two-sided interval, so we look up the Z-score for 1 - /2 = 0.9750
cumulative probability and read 1.96. This means that the population value p is expected to
lie within 1.960,,, on either side of p, 19 times out of 20. The Z-score for a 68.27%
confidence level is of course 1.00 and that for a 95.45% confidence level is 2.00. This
traditional method of using the normal distribution to find confidence intervals for a binomial



proportion is called a “Wald interval” in the statistics literature (e.g., Vollset, 1993; Brown et
al., 2002; Park and Leemis, 2019).

The normal approximation is very convenient, but is not always applicable, for example for
very low or very high abundances, for very low number of points counted, or when high
levels of confidence are sought (Vollset, 1993; Howarth, 1998; Weltje, 2002). One reason is
that the normal distribution is symmetrical, but the binomial distribution is not, except if p =
0.5 (Taylor, 1997). A common criteria is that both Np and N(1-p) must be larger than 5 or 10
for the normal approximation to apply (e.g., Howard, 1993; Vollset, 1993). However, the use
of this rule is discouraged by Vollset (1993). Figure Sla shows two examples of Np smaller
than 5, where the normal and binomial distribution diverge markedly, but even at Np = 10,
the difference is noticeable. Brown et al. (2002) write that “the standard method in universal
use [the normal approximation] is riddled with problems; so much so that it cannot be
salvaged.”

With a binomial distribution, the confidence bounds are asymmetrical, i.e. the lower bounds
and upper bounds are not equal (Howarth, 1998), except when p = 0.5. There are many
different ways to obtain lower and upper confidence bounds for the binomial distribution, as
discussed for example by Vollset (1993), Howarth (1998) or Park and Leemis (2019). We
show three of them for a proportion of 0.1 and confidence levels of 68.27% and 95.45% in
figure S1b. For the Wald interval (normal approximation), the confidence bounds are
symmetrical and equal to one or two standard deviations, respectively, for these confidence
levels. The two non-normal binomial estimators shown are the Clopper-Pearson and the
Wilson-score. In both cases, the confidence bounds are asymmetrical. The Clopper-Pearson
method aims to provide coverage equal to or higher than the specified confidence level (Park
and Leemis, 2019). In other words, it is a conservative method that may overestimate the
width of the confidence bounds to remain “on the safe side”. Although this method was
recommended by Howarth (1998), we do not use it further in this article. Finally, the Wilson-
score method is recommended by Park and Leemis (2019) when N is 49 or more and the goal
is to “minimize the absolute difference between the stated and actual coverage”, which is
what we aim for here. At very large N, all of these methods converge.
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Figure S1. (a) Binomial distribution (blue dots) showing the probability of a certain number of
successes, for different combinations of population proportions (p) and numbers of trials (N). A
normal distribution with the same mean and standard deviation is shown for each plot (black bell
curve). (b) Different ways of estimating confidence intervals for a binomial proportion. These last two
graphs were drawn using a Python code translated from the conf package 1.7.0 for R of Christopher
Weld and collaborators (https://CRAN.R-project.org/package=conf), more specifically the binomTest
command, as used in Park and Leemis (2019).
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