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Supplemental File 1 
 

A REVIEW OF SOME PREVIOUS STUDIES AND 

STATISTICAL CONCEPTS 
 

The Binomial Distribution to Statistically Model Point Counts 

 

Point counts have often been studied using statistics, but we have not seen an equivalent 

treatment for line counts, and we do not attempt one here. In the paper, we only use statistical 

approaches to study point counts.  

 

The binomial distribution describes a Bernoulli process, in which there are two possible 

outcomes for each trial: success or failure. For example, we randomly draw balls from a bag 

which contains blue and red balls, and drawing a blue ball is a ‘success’, with probability p, 

which is of course the proportion of blue balls. The selected ball is placed back in the bag and 

the balls are mixed after each draw, so each draw is independent. The number of trials, N, is 

fixed and known in advance, and the number of successes is discrete. If (i) a rock or deposit 

contains only two components, (ii) the point counting grid is larger than the largest 

component, and (iii) the rock or deposit is homogenous, then point counting is a Bernouilli 

sampling process (Neilson and Brockman, 1977; Weltje, 2002) and the binomial distribution 

applies
1
. 

 

The binomial distribution is a discrete function, unlike the normal distribution which is 

continuous. The binomial population mean is µ = Np and its population standard deviation is 

σnb = ���(1 − �), in terms of the number of successes (Taylor, 1997; Howarth, 1998). For 

example, suppose that we count N = 400 points in a homogeneous thin section which contains 

blue and red particles and the true proportion of blue particles is p = 0.5. If we count these 

400 points once, we will find x blue particles, somewhere close to 200, but probably not 

                                                 
1
 In some cases, the binomial distribution may not be a relevant statistical model for point counting, for example 

if the thin section, specimen or area under study is not internally homogeneous, or if the observations are not 

independent from each other, as would be the case if the same grain is counted twice (Weltje, 2002), or if the 

rock has some structure, like in a gneiss. However, the following discussion will assume that the binomial 

distribution applies. A generalized version of the binomial distribution, where more than two components are 

present, is the multinomial distribution (Howarth, 1998; Weltje, 2002). 



exactly 200. If we repeat the count many times at different places on the thin section, we 

expect to count an average of Np = 200 blue particles if the method is accurate. According to 

statistical theory, the standard deviation of the measurements, snb, should be equal to that of 

the population (Weltje, 2002): σnb = √400 ∗ 0.5 ∗ 0.5 = 10 blue particles.  

 

If we instead express the population standard deviation as a proportion of blue particles, we 

divide it by N and the formula becomes σ���� =	��(���)
� . In our example, σprop on the 

proportion of blue particles would be ��.�∗�.�
��� =	0.025, and the relative standard deviation 

would be 0.025/0.5 = 5%. Should we actually repeat the experiment a very large number of 

times, the measured standard deviation sprop should equal σprop. We see that σprop, and 

therefore that the predicted counting error (assumed to be equivalent to precision in this line 

of reasoning), depends on N and p, with σprop decreasing with the square root of N. This is the 

basis of the “error chart” of van der Plas and Tobi (1965), which plots 2σprop values, absolute 

or relative (Fig. 2b in the paper). Continuing with our example, we use N = 400 and p = 0.5 

on the chart and read absolute 2σprop halfway between the continuous lines for 4% (0.04) and 

6% (0.06), i.e. about 5% (0.05). Or if we are interested in the relative value of 2σprop, we find 

that the dashed line for 10% relative passes directly through our coordinates. Implicit in 

constructing this chart is the assumption that the binomial distribution can be approximated 

with a normal distribution so that the standard deviation can be used to build confidence 

intervals for a binomial distribution. 

 

 

Confidence Intervals for a Binomial Proportion 

 

A confidence interval is “an interval of plausible values that a population parameter might 

assume, based on the value of a statistic which estimates that parameter” (Davis, 2002). Here 

the population parameter of interest is the actual proportion p of a constituent and the statistic 

is the measured proportion �̂ = x/N from componentry methods. The confidence interval is 

built so that there is a specified probability (confidence level), such as 90% or 95%, that the 

true value falls within the interval. The significance level (or desired level of risk), α, is 

defined as 1 minus the confidence level. 

 

If the normal distribution is a good approximation of the binomial distribution, then 

confidence intervals for point counting and other componentry methods can be estimated 

using the standardized normal distribution (Vollset, 1993). For example, the 2σprop values in 

the van der Plas and Tobi (1965) chart would correspond to 95.45% confidence intervals. In 

other words, for a certain point count, there is a 95.45% chance that the true proportion of a 

component lies within 2σprop on each side of the counted proportion �̂. In generalized form, 

the width of the confidence interval for a proportion is Z σprop on either side of the measured 

proportion, where the Z-score corresponds to a specific cumulative probability for the 

standardized normal distribution (Vollset, 1993; Howarth, 1998). These scores can be found 

in tables within statistical textbooks (e.g. Davis, 2002). For example, for a 95.0% confidence 

level, α = 0.05, but this is a two-sided interval, so we look up the Z-score for 1 - α/2 = 0.9750 

cumulative probability and read 1.96. This means that the population value p is expected to 

lie within 1.96σprop on either side of �̂, 19 times out of 20. The Z-score for a 68.27% 

confidence level is of course 1.00 and that for a 95.45% confidence level is 2.00. This 

traditional method of using the normal distribution to find confidence intervals for a binomial 



proportion is called a “Wald interval” in the statistics literature (e.g., Vollset, 1993; Brown et 

al., 2002; Park and Leemis, 2019).   

 

The normal approximation is very convenient, but is not always applicable, for example for 

very low or very high abundances, for very low number of points counted, or when high 

levels of confidence are sought (Vollset, 1993; Howarth, 1998; Weltje, 2002). One reason is 

that the normal distribution is symmetrical, but the binomial distribution is not, except if p = 

0.5 (Taylor, 1997). A common criteria is that both Np and N(1-p) must be larger than 5 or 10 

for the normal approximation to apply (e.g., Howard, 1993; Vollset, 1993). However, the use 

of this rule is discouraged by Vollset (1993). Figure S1a shows two examples of Np smaller 

than 5, where the normal and binomial distribution diverge markedly, but even at Np = 10, 

the difference is noticeable. Brown et al. (2002) write that “the standard method in universal 

use [the normal approximation] is riddled with problems; so much so that it cannot be 

salvaged.” 

 

With a binomial distribution, the confidence bounds are asymmetrical, i.e. the lower bounds 

and upper bounds are not equal (Howarth, 1998), except when p = 0.5. There are many 

different ways to obtain lower and upper confidence bounds for the binomial distribution, as 

discussed for example by Vollset (1993), Howarth (1998) or Park and Leemis (2019). We 

show three of them for a proportion of 0.1 and confidence levels of 68.27% and 95.45% in 

figure S1b. For the Wald interval (normal approximation), the confidence bounds are 

symmetrical and equal to one or two standard deviations, respectively, for these confidence 

levels. The two non-normal binomial estimators shown are the Clopper-Pearson and the 

Wilson-score. In both cases, the confidence bounds are asymmetrical. The Clopper-Pearson 

method aims to provide coverage equal to or higher than the specified confidence level (Park 

and Leemis, 2019). In other words, it is a conservative method that may overestimate the 

width of the confidence bounds to remain “on the safe side”. Although this method was 

recommended by Howarth (1998), we do not use it further in this article. Finally, the Wilson-

score method is recommended by Park and Leemis (2019) when N is 49 or more and the goal 

is to “minimize the absolute difference between the stated and actual coverage”, which is 

what we aim for here. At very large N, all of these methods converge. 

 



 
 

Figure S1. (a) Binomial distribution (blue dots) showing the probability of a certain number of 
successes, for different combinations of population proportions (p) and numbers of trials (N). A 

normal distribution with the same mean and standard deviation is shown for each plot (black bell 

curve). (b) Different ways of estimating confidence intervals for a binomial proportion. These last two 

graphs were drawn using a Python code translated from the conf package 1.7.0 for R of Christopher 

Weld and collaborators (https://CRAN.R-project.org/package=conf), more specifically the binomTest 

command, as used in Park and Leemis (2019). 
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