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1A. Sm-Nd analytical procedures 22 

Rock samples were crushed and pulverized using a ceramic mortar and pestle, then 23 

dissolved using lithium borate fusion and analyzed on ICP-ES for major elements and ICP-MS 24 

for Rare Earth Elements (REEs) and other trace elements.  25 

Sm-Nd isotopic analyses were performed at GÉOTOP – Université du Québec à 26 

Montréal. 80-110 mg of powder of each sample was spiked with a 150Nd/149Sm-enriched spike 27 

and dissolved in a mixture of 15N HNO3 and 29N HF over 5-7 days. The resulting fluoride salts 28 

were treated with 16N HNO3 and 6N HCl to dissolve and enhance the solubility of the REEs. 29 

Iron was removed by loading samples in ion-exchange polyprep columns with AG1X8 resin and 30 

6N HCl. The REEs were isolated with TRU Spec resin using 0.05N HNO3, and Nd and Sm were 31 

separated with LN Spec resin using 0.2N, 0.3N, and 0.5N HCl. The Nd and Sm fractions were 32 

loaded onto Re filaments and analyzed on a TRITON PLUS thermal ionization mass 33 

spectrometer (TIMS) in static mode. Mass fractionation was corrected using the ratio 34 

146Nd/144Nd = 0.7129 assuming exponential fractionation behavior. The Nd isotopic 35 

compositions are expressed as eNd(0) and calculated using the present day chondritic uniform 36 

reservoir (CHUR) values of 143Nd/144Nd = 0.512639 and 147Sm/144Nd = 0.1966 (Goldstein et al., 37 

1984). The 147Sm/144Nd ratios are accurate to 0.5%, corresponding to an average eNd(0) error of 38 

±0.5 epsilon units, based on measurements of the JNdi Nd standard (143Nd/144Nd = 0.512095±5, 39 

n=3).  40 

 41 

1B. U-Th/Pb petrochronology and analytical procedures 42 

Petrochronology is the interpretation of isotopic dates in light of complementary 43 

elemental or isotopic information from the same mineral(s) (Kylander-Clark et al., 2013). 44 

Yttrium (Y) zonation is a key component of monazite petrochronological interpretation. Y is 45 



 3 

readily incorporated in the crystal lattice of monazite (Pyle et al., 2001). In metapelitic rocks, 46 

however, garnet preferentially incorporates Y and heavy rare earth elements (HREEs) during 47 

growth, depleting the free Y and HREE content of the system and leaving monazites that grew in 48 

the presence of garnet Y-poor (Spear and Pyle, 2002; Pyle and Spear, 2003; Kohn et al., 2005). 49 

Garnet breakdown during anatexis or decompression can release Y into the system, causing any 50 

concurrently crystallizing monazite to be higher in Y content (Pyle, et al., 2001). Monazite 51 

results in garnet-bearing rocks can be linked to stages of garnet growth and breakdown, and 52 

therefore to prograde or retrograde metamorphism. In melt-present systems, monazite can 53 

dissolve on the prograde path during partial melting but tends to recrystallize on the retrograde 54 

path, still resulting in higher Y and HREE content in retrograde monazites (Kelsey et al., 2008). 55 

Monazite grains were identified in thin section and selected using a Mineral Liberation 56 

Analysis 650 field emission gun environmental scanning electron microscope at Queen’s Facility 57 

for Isotope Research (Queen’s University, Kingston, Ontario, Canada). Selected grains were 58 

chemically mapped for U, Th, Y, Ca, and Si with X-ray wavelength dispersive spectrometry on a 59 

JEOL JXA-8230 electron microprobe, also at Queen’s Facility for Isotope Research. The 60 

electron microprobe experimental conditions were set at an acceleration voltage of 15 kV, beam 61 

current of 200 nA, dwell time of 100 ms and step size of 0.5-1.4 µm.  X-ray element maps 62 

identified chemical zonation and informed laser spot locations.  63 

Monazite was analyzed directly in thin section using the Laser Ablation Split Stream 64 

(LASS) method at the University of California Santa Barbara. Spot location was guided with the 65 

aid of X-ray compositional maps. Instrumentation consists of a Photon Machines 193 nm ArF 66 

Excimer laser and ‘HelEx’ ablation cell coupled to a Nu Instruments HR Plasma high-resolution 67 

multi-collector MC-ICP-MS (U, Th, and Pb isotopes) and an Agilent 7700S Quadrupole ICP-MS 68 
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(major and trace elements). Methods in this study follow those outlined in Kylander-Clark et al. 69 

(2013) with modifications outlined in McKinney et al. (2015). Monazite was ablated using a 7 70 

µm diameter spot at 3 Hz repetition rate for 90 shots at a laser fluence of 1.5 J/cm2, resulting in 71 

craters that are ~4 µm deep.  72 

Data reduction, including corrections for baseline, instrumental drift, mass bias, down-73 

hole fractionation as well as age calculations were carried out using Iolite v. 2.5 (Paton et al. 74 

2010). Background intensities and changes in instrumental bias were interpolated using a 75 

smoothed cubic spline while down-hole inter-element fractionation was modeled using an 76 

exponential function. Statistics for baselines, on peak intensities and isotopic ratios were 77 

calculated using the mean with a 2.S.D. outlier rejection. The 238U and 235U decay constants of 78 

Jaffey et al. (1971) and the 232Th decay constant of Amelin and Zaitsev (2002) were employed to 79 

calculate ages. All uncertainties are quoted at 2σ and include contributions from the external 80 

reproducibility of the primary reference material for the 206Pb/238U ratios and 208Pb/232Th ratios.  81 

Monazite U-Th/Pb data was normalized to ‘44069’ (424 Ma 207Pb/235U ID-TIMS age, 82 

Aleinikoff et al. 2006), employed to monitor and correct for mass bias as well as Pb/U and Pb/Th 83 

down-hole fractionation. To monitor data accuracy, a reference monazite ‘FC-1’ (55.7 Ma 84 

206Pb/238U ID-TIMS age, Horstwood et al. 2003) was analyzed concurrently (once every ~7 85 

unknowns) and mass bias- and fractionation-corrected based on measured isotopic ratios of the 86 

primary reference material. During the analytical period, 21 analyses of FC-1 gave a weighted 87 

mean 206Pb/238U date of 56.0 ± 1.0 Ma, and a weighted mean 208Pb/232Th date of 55.2 ± 0.9 Ma.  88 

Trace element data were normalized to ‘Bananeira’ monazite using P as an internal 89 

standard and the concentration values reported in Kylander-Clark et al., (2013). Si, Ca, and Mg 90 

levels were monitored for evidence of inclusions and ablation sites visually inspected to ensure 91 
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no contamination occurred during analysis. Based on the long-term reproducibility of multiple 92 

secondary reference minerals, trace element concentrations are accurate to better than 5% (2σ).  93 

 94 

  95 
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1C. Supplementary back-scattered electron imagery and X-ray ion microprobe chemical 96 

maps 97 

 98 
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2C. U-Th/Pb monazite petrochronology data available in a separate Excel file 167 

 168 
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