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Additional Field and Stratigraphic Results


[image: ]
Figure S1: Field photos showing the lithologies that characterize the Buffalo Hump Formation within the study region. Photos include (A) Argillite interval showing pervasive cleavage, (B) Channelization within a coarser sandy interval, (C) Coarse cobble within the conglomeratic facies, and (D) Intact cobble (sample 34DTB19) collected from the conglomerate facies which was separated and analyzed. 

[image: ]
Figure S2: Measured stratigraphic section of ~240 m of the Buffalo Hump Formation. Overall, the section consists of coarsening upwards sandstone to conglomerate and mudstone bundles. Generally, exposure decreases up-section reflecting the increased prevalence of recessive mudstone intervals. At this location, Buffalo Hump Formation is in fault contact above upper Deer Trail Group (McHale Slate; Miller, 1996; Campbell and Loofbourow, 1964).  

[image: ][image: ]Figure S3: Measured stratigraphic section of ~60 m of the Buffalo Hump Formation. Overall, this section consists of a single coarsening upwards mudstone to sandstone with local gravel channel sequences. At the top of the section, a dip-slope and limited exposure precluded further stratigraphic measurements. At this location, Buffalo Hump Formation unconformably overlies uppermost Deer Trail Group rocks (Stensgar Dolomite; Miller, 1996).  Miller and Whipple (1989) report localized argillaceous matrix-supported conglomerate at the base of the Buffalo Hump Formation. 


Figure S4: Where observed, the stratigraphy of the Buffalo Hump Formation is consistent with a shallow marine through fluvial-deltaic succession in a basin that gained accommodation space faster than sediment infill, resulting in retrogradation stacking (or transgressive systems tract; after Neal and Abreu, 2009). Similar depositional sequences in the coeval Uinta Mountain Group record a long-scale retrogradational system of large-lateral extent lithofacies across a broad, low-gradient basin floor in an epicontinental sea (Kingsbury-Stewart et al., 2013).


[image: ]
Figure S5: Cartoon basin model for the Buffalo Hump Formation. Detrital zircon and stratigraphic results are consistent with deposition of the Buffalo Hump Formation in an extensional basin, possibly a half-graben resulting from a Northeast-Southwest striking (NW dipping) ancestral Jump-off Joe normal Fault. We suggest this basin exhumed Deer Trail group rocks on its footwall. 



Paleocurrent measurements methodology and results

Ripple foresets (mostly trough crossbeds, described by Evans, 1987 as festoon) were measured from within the sandy, likely deltaic, facies of both stratigraphic sections (Figs. S2, S3) following methods similar to those described in DeCelles et al., (1983). Foreset measurements were corrected for the dip of the beds using Stereonet 11 (http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html; Allmendinger et al., 2013; Cardozo and Allmendinger, 2013).


Table S1: Ripple foreset and bedding measurements from both stratigraphic sections. Note measurements are in dip-direction, and dip. 

	Section 1 Paleocurrent Measurements
	
	Section 2 Paleocurrent Measurements

	ripple foreset (dd)
	bedding (dd)
	
	ripple foreset (dd)
	bedding (dd)

	dd
	dip
	dd
	dip
	
	dd
	dip
	dd
	dip

	315
	63
	333
	54
	
	315
	50
	324
	46

	295
	63
	313
	56
	
	339
	66
	324
	46

	297
	58
	313
	64
	
	342
	45
	308
	43

	349
	64
	345
	66
	
	310
	47
	317
	42

	312
	88
	320
	74
	
	322
	35
	300
	48

	310
	74
	298
	72
	
	331
	41
	316
	45

	315
	45
	345
	41
	
	311
	46
	309
	37

	315
	56
	312
	50
	
	292
	61
	330
	43

	290
	87
	293
	82
	
	319
	53
	282
	50

	302
	80
	300
	58
	
	278
	30
	294
	46

	305
	64
	298
	77
	
	305
	41
	276
	45

	281
	72
	295
	78
	
	308
	39
	304
	34

	289
	65
	290
	58
	
	292
	40
	297
	37

	308
	57
	295
	63
	
	321
	35
	308
	42

	294
	75
	315
	58
	
	298
	51
	270
	52

	322
	38
	302
	58
	
	330
	44
	302
	36

	295
	89
	289
	75
	
	286
	30
	313
	22

	284
	86
	272
	78
	
	
	
	
	

	340
	43
	302
	66
	
	
	
	
	

	280
	64
	285
	57
	
	
	
	
	

	300
	58
	297
	78
	
	
	
	
	

	304
	54
	300
	63
	
	
	
	
	

	300
	85
	304
	75
	
	
	
	
	

	303
	83
	284
	57
	
	
	
	
	

	295
	78
	290
	72
	
	
	
	
	

	287
	86
	295
	47
	
	
	
	
	



Individual sample DZ U-Pb results
[image: ]Figure S6: Individual Kernel Density plots for the grouped Buffalo samples in Figures 2. Note ca. 1.3-1.0 Ga “Grenville,” ca. 1.45 midcontinent Granite-Rhyolite and ca. 1.9-1.6 age-components dominate (>80%) the population of all samples. Age-spectra are shown in kernel density estimates (KDE) with 25 myr band and binwidths (DensityPlotter8.5, Vermeesch, 2012). Ca. 760 Ma detrital zircon populations are over-represented due to our targeted sampling strategy. See Table S2 for various individual sample maximum depositional-age calculations. Colored age-fields are the same as Fig. 2.


Alternative maximum depositional age calculations

[image: ]
Table S2: Additional maximum depositional ages calculations for each individual Buffalo Hump sandstone sample. Our preferred maximum depositional ages is 758±7 Ma for the Buffalo Hump Formation. Green boxes are maximum depositional ages calculations that overlap (within 2σ uncertainty) with our preferred maximum depositional ages. Samples shown in blue boxes calculated maximum depositional ages that are older than our preferred age (within 2σ uncertainty). Only sample BH1 records MDA calculations that are younger than our preferred maximum depositional age (within 2σ uncertainty; yellow boxes). This may reflect the greater sample size of BH1 compared to the other samples and thus greater likelihood of sampling either A) very rare (likely <0.2%) ca. 720-740 Ma grains or B) ca. 760 Ma grains that experienced minor Pb-loss.

Laser ablation split stream analysis (LA-SS-ICPMS) of Hf isotopes (LA-MC-ICPMS) and U-Pb ages (LA-Q-ICPMS)
Zircon was concentrated using standard crushing and heavy liquid techniques and all laser ablation work was performed on individual mineral grains, mounted and polished to approximately the grain center in 1″ epoxy rounds. Note: BH1 was separated and mounted by A.R. Nordsvan ~9 months prior to when D.T. Brennan separated the remaining samples, making contamination by the same ca. 760 ma DZ grains highly unlikely. After polishing, mounts were carbon coated and cathodoluminescence imaged with a TESCAN MIRA scanning electron microscope at the Microscopy and Microanalysis Facility in the John de Laeter Centre, for targeting of homogenous zircon zones. 
Hf isotopes and U-Pb ages in zircon were simultaneously measured by laser ablation split stream at the Geohistory Facility in the John de Laeter Centre across three analytical sessions. Zircon crystals mounted in 1” epoxy rounds were ablated using a Resonetics RESOlution SE 193nm laser incorporating a dual volume S155 sample cell, coupled to a Nu Plasma II multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) for Hf isotope determination and an Agilent 7700 or Agilent 8900 quadrupole inductively coupled plasma mass spectrometer (Q-ICPMS) for age determination. Following two cleaning pulses and a 40s period of background analysis, samples were spot ablated for 35-40 s at a 7-10Hz repetition rate using a 38 or 50 μm beam and laser energy at the sample surface of 3.0 J cm-2. An additional 15s of baseline was collected after ablation. The sample cell was flushed with ultrahigh purity He (320 mL min-1) and N2 (1.2 mL min-1) and high purity Ar was employed as the plasma carrier gas, split to each mass spectrometer. 
For Hf isotope analysis, all isotopes (180Hf, 179Hf, 178Hf, 177Hf, 176Hf, 175Lu, 174Hf, 173Yb, 172Yb and 171Yb) were counted on the Faraday collector array. Time resolved data was baseline subtracted and reduced using Iolite (DRS after Woodhead et al., 2004), where 176Yb and 176Lu were removed from the 176 mass signal using 176Yb/173Yb = 0.7962 (Chu et al., 2002 and 176Lu/175Lu = 0.02655 (Chu et al., 2002) with an exponential law mass bias correction assuming 172Yb/173Yb = 1.35274 (Chu et al., 2002). An effective 176Yb/173Yb correction factor was determined for each session by iteratively adjusting the 176Yb/173Yb ratio until standard corrected ratios on secondary zircon reference materials with varying Yb content yielded values within the recommended range. No correlation was apparent between the abundance of interfering isotopes (Yb or Lu) and corrected 176Hf/177Hf ratios. The interference corrected 176Hf/177Hf was normalized to 179Hf/177Hf = 0.7325 (Patchett and Tatsumoto, 1980) for mass bias correction. Zircons from the Mud Tank carbonatite locality were analysed together with the samples in each session to provide standard referenced 176Hf/177Hf ratios (Table S3, below). In all cases, Mud Tank analyses reproduced the recommended value (0.282505 ± 44; Woodhead and Hergt, 2005) within uncertainty. Data for secondary standards is also provided in Table S3. All standards reproduced accepted values within uncertainty for each session. In addition, the corrected 178Hf/177Hf ratio was calculated to monitor the accuracy of the mass bias correction and yielded an average value of 1.4671504 ± 0.0000056 (MSWD = 0.35), which is within the range of values reported by Thirlwall and Anczkiewicz (2004). Calculation of εHf values employed the decay constant of Scherer et al. (2001) and the Chondritic Uniform Reservior (CHUR) values of Bouvier et al., (2008).
Table S3: Recommended 176Hf/177Hf value for zircon reference materials and weighted mean standard corrected ratio obtained in each analytical session (Mud Tank primary reference material).
	Zircon standard
	Recommended 176Hf/177Hf 
	Weighted mean for session 1 (3/12/2018)
	Weighted mean for session 2 (09/05/2019)
	Weighted mean for session 3 (17/03/2020)

	Mud Tank
	0.282505 ± 0.000044
(Woodhead and Hergt, 2005)
	0.282507 ± 0.000006 
(MSWD = 0.47,
n = 17)
	0.282507 ± 0.000004 (MSWD = 0.89,
n = 20)
	0.282507 ± 0.00009 
(MSWD = 0.11,
n = 20)

	GJ-1
	0.282000 ± 0.00005, (Morel et al., 2008)
	0.282027 ± 0.000008 (MSWD = 0.21,
n = 16)
	0.282011 ± 0.000005 (MSWD = 1.00,
n = 19)
	0.282013 ± 0.00005 
(MSWD = 0.30,
n = 19)

	Plešovice
	0.282482 ± 0.000013
(Sláma et al., 2008)
	0.282485 ± 0.000009 
(MSWD = 0.52,
n = 10)
	0.282473 ± 0.000006 (MSWD = 0.77,
n = 8)
	0.282477 ± 0.000006 (MSWD = 0.55,
n = 9)

	91500
	0.282306 ± 0.000311
(Woodhead et al., 2004)
	0.282300 ± 0.000009 
(MSWD = 0.18,
n = 15)
	0.282303 ± 0.000006 (MSWD = 1.03,
n = 18)
	0.282306 ± 0.000005 (MSWD = 0.59,
n = 19)



Ages were simultaneously measured on the aerosol split using LA-Q-ICP-MS analysis and the following isotopes were monitored for 0.02 s each: 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, and 238U. The primary dating reference materials used in this study were 91500 (1062.4±0.4 Ma; Wiedenbeck et al., 1995) and/or OG1 (3465.4±0.6; Stern et al., 2009) with Plešovice (337.13±0.37 Ma; Sláma et al., 2008) and/or GJ-1 (608.53±0.37; Jackson et al., 2004) analysed as secondary age standards. 206Pb/238U ages and 207Pb/206Pb calculated for zircon age standards, treated as unknowns, were found to be within uncertainty of the accepted value (Table S4). The time-resolved mass spectra were reduced using the U_Pb_Geochronology4 data reduction scheme in Iolite 3.5 (Paton et al, 2011 and references therein).

Table S4: Recommended ages for zircon reference materials and weighted mean standard corrected ages obtained in each analytical session.
	Zircon standard
	Recommended age (Ma)
	1st session (03/12/2018)
	2nd session (9/05/2019)
	3rd session (7/03/2020)

	GJ-1
	608.5 ± 1.5 Ma 
(Jackson et al., 2004)
601.5± 0.40 Ma
(Horstwood et al., 2016)
	603.6 ± 0.88 Ma 
(MSWD = 0.83, 
n = 20)
	608.3± 1.4 Ma 
(MSWD = 5.0, 
n = 17)
	602.2 ± 0.84 Ma 
(MSWD = 1.38, 
n = 19)

	Plešovice
	337.13 ± 0.37 Ma
(Sláma et al., 2008)
	338.4 ± 0.7 Ma 
(MSWD = 2.0, 
n = 9)
	-
	339.5 ± 1.79 Ma 
(MSWD = 4.5, 
n = 7)

	91500
	1062.4 ± 0.4 Ma
(Wiedenbeck et al., 1995)
	1062.0 ± 2.6 Ma
(MSWD = 0.54, 
n = 20)
	1061.4 ± 3.9 Ma
(MSWD = 0.01, 
n = 20)
	1062.3 ± 1.6 Ma
(MSWD = 0.89, 
n = 20)

	OGC
	3467 ± 3 Ma
(Stern et al., 2009)
	3465.2 ± 2.2 Ma
(MSWD = 0.54, 
n = 18)
	-
	3465.1 ± 4.0 Ma
(MSWD = 1.69, 
n = 14)



Conventional LA-Q-ICP-MS Zircon U-Pb Dating Methodology

LA-ICP-MS data collection was performed at the GeoHistory Facility in the John de Laeter Centre, Curtin University, Perth, Australia. Individual zircon grains (mounted and polished in 1” epoxy rounds) were ablated using a Resonetics RESOlution SE 193nm laser incorporating a dual volume S155 sample cell, with isotopic intensities determined on an Agilent 8900 QQQ (single stream). After two cleaning pulses and 35s of baseline signal acquisition, zircons were ablated using a 38 µm diameter laser spot, 7 Hz laser repetition rate, and on-sample laser energy of 2.5 J cm-2. Ultrahigh purity He-N2 was used to flush the cell (He 350 mL min-1 and N2 3.8 mL min-1) and high purity Ar was utilized as the carrier gas. The following isotopes were monitored for 0.02 s each: 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, and 238U. The primary reference material used in this study was 91500 (1062.4±0.4 Ma; Wiedenbeck et al., 1995) with Plešovice (337.13±0.37 Ma; Sláma et al., 2008), GJ-1 (601.5± 0.40 Ma
(Horstwood et al., 2016) and OGC (3465.4±0.6; Stern et al., 2009) used as secondary age standards. Ages calculated for all zircon age standards, treated as unknowns, were found to be within uncertainty of the recommended value; Plešovice (340.0±0.66; MSWD=0.71; n=23 Ma) with 91500 (1062.1±2.8 Ma; MSWD=0.11; n=23;), GJ-1 (603.6±1.2; MSWD=0.51; n=23) and OGC (3464.7±2.8 Ma; MSWD=0.49; n=23). The time-resolved mass spectra were reduced using the U_Pb_Geochronology3 data reduction scheme in Iolite (Paton et al, 2011 and references therein).

Rapid  LA-Q-ICP-MS Zircon U-Pb Dating Methodology

Fast laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was performed at the GeoHistory Facility in the John de Laeter Centre, Curtin University, Perth, Australia. Ablations utilized an ASI RESOlution-SE 193 nm excimer laser controlled by GeoStar μGIS™ software. Laser fluence was calibrated above the sample cell using a hand held energy meter, and subsequent analyses were performed in constant energy mode. The Laurin Technic S155 sample cell was flushed by ultrahigh purity He (320 mL min-1) and N2 (1.2 mL min-1), both of which were passed through inline gold sand Hg traps. High purity Ar was used as the ICP-MS carrier gas (flow rate ~1 L/min). All measurements were performed using an Agilent 8900 QQQ quadrupole ICP-MS operated in single quad mode. Each analytical session consisted of initial gas flow and ICP-MS ion lens tuning for sensitivity with the signal smoothing device (‘squid’) connected. Additional tuning adjusted flow parameters for robust plasma conditions (238U/232Th ~1; 206Pb/238U ~ 0.2; and 238UO/238U <0.004). Finally, pulse-analog (P/A) conversion factors were determined on the NIST 610 reference glass by varying laser spot sizes and/or laser repetition rate to yield 1-2 Mcps per element. After tuning, the signal smoothing device was removed and the laser was connected to the mass spectrometer via a shorter (~60 cm) length of Teflon tubing. Using this setup, signal wash-in and wash-out times were typically around 200 and 600 ms, respectively. Following Chew et al. (2019), laser parameters were chosen as 20 µm spot diameter, 50 Hz repetition rate, and on-sample laser energy of 2 Jcm-2. The Geostar software sequence for fast ablations consisted of a 3 s delay after the TTL pulse for baseline acquisition, 4 s ablation, and 7 s delay for the 8900 to complete data handling and return to a ‘wait for trigger’ state. 91Zr, 206Pb, 207Pb, 208Pb, 232Th, and 238U were collected with dwell times of 3, 15, 20, 6, 6, and 9 ms, respectively, for a total acquisition time of 10s, and a duty cycle (data aqusition time/total time) of about 66%. The time-resolved mass spectra were reduced using the ‘U-Pb Geochronology’ data reduction scheme in Iolite 4.3.5.3 (Paton et al., 2011 and references therein). The primary dating reference materials used in this study were 91500 (1062.4±0.4 Ma; Wiedenbeck et al., 1995) and/or OG1 (3465.4±0.6; Stern et al., 2009) with Plešovice (337.13±0.37 Ma; Sláma et al., 2008) and GJ-1 (608.53±0.37; Jackson et al., 2004) analysed as secondary age standards. Concordia ages calculated using IsoplotR (Vermeesch P., 2018, Geoscience Frontiers, 9, 1479-1493) for zircon reference materials Plešovice and GJ1, treated as unknowns against primary reference material 91500, were 342 ± 2 Ma and 608 ± 2 Ma (n=32; errors are 95% conf. including internal and external sources of error), respectively, and are within uncertainty of their accepted ages. 
Because the fast ablation protocol outlined here does not include pre-ablation cleaning pulses to remove surface contamination, we assessed accuracy of Pb isotope data by comparing the results from fast ablation analyses to a corresponding data set collected using the same grains and standard materials, but using a conventional LA-ICP-MS geochronology method. Inspection of all zircon reference data in inverse Concordia space does not reveal any discernible trends to indicate surface derived common lead contamination. Sample data is generally more scattered in nature, but a comparison of discordance (expressed as (7/6-6/8)/(7/6)*100) for both data sets does not reveal a statistically significant difference (fig. S7 below). We conclude that the lack of cleaning pulses during the fast ablation protocol does not introduce significant additional non-radiogenic Pb, and that the method is well suited to characterize a large sample pool for the purpose of identifying specific grain populations which can then be subjected to a subsequent conventional, more precise analysis
Figure S7: Box and whisker plot of discordance in 150 of the same grains in the rapid (left) vs. follow up conventional analysis sessions (orange). 
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739±21 768±31

Youngest single analysis 

with uncertainty

single analysis Dickinson and Gehrels, 2009 715±
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764±
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Youngest single grain 

(multiple analysis)

Weighted mean Spencer et al., 2016 735±11 N/A 759±18 N/A

Youngest analysis cluster 2 

or more (1σ overlap)

Weighted mean Dickinson and Gehrels, 2009 718±
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770±

16
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N/A

Youngest cluster 3 or more 

(1σ overlap)
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population (6+ grains 

needed)
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Youngest graphical peak 

(PDP, 2 grain minimum)

Probability density plot Dickinson and Gehrels, 2009 759 769 759 N/A

Maximum Likelihood Age

IsoplotR radial plot 

minimum finite mixture

Vermeesch, 2020 726±7 771±7 760±5  N/A
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