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Supplemental Material 

 

Figure S1. Inverse-distance-weighted (IDW) root mean square error (RMSE) values for different 
combinations of n and p, where n is the number of neighboring temperature values included in 
the weighted average estimate, and p is the weight or power parameter applied to each neighbor. 
The combination of n and p that resulted in the lowest RMSE were chosen for the final IDW 
calculations reported in this study. Note that a jitter factor was applied to the x-axis values of 
data to improve readability. 

Figure S2. Latitudinal MAT transects and associated uncertainties from the Monte Carlo 
simulations, for the Campanian (A), early Maastrichtian (B), and late Maastrichtian (C) analysis 
windows. The solid lines show the mean MAT values for the western edge (red), center (blue), 
and eastern edge (green) of the study areas. The shaded regions show the maximum and 
minimum range of the 1000 unique interpolated temperature maps. 

Figure S3. Raw fossil pollen (A, B, C) and leaf (D, E, F) bar charts showing differences in 
north/south ecoregion abundances. 

Figure S4. Spatial patterns in fossil pollen (A-C) and leaf (D-F) ecoregion abundances. 
Abundance categories I, II, III, and IV indicate the mean, minimum, and minimum interpolated 
abundances for each ecoregion type. 
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DETAILED METHODS AND MATERIALS 
1. Temperature estimate uncertainties 
 

The uncertainties associated with each individual MAT estimate were combined into a 
total MAT uncertainty using a root sum of squares method: 

𝑢௖ሺ𝑇ሻ ൌ  ඥ𝛴௜ሺ𝑢ሺ𝑇௜ሻሻଶ (1) 
where uc(T) is the combined standard uncertainty, and u(Ti))

2 is the uncertainty associated with 
the individual MAT estimate Ti. 
 
2. Raw versus adjusted temperature estimates 
 

Three analysis windows were chosen with the goal of minimizing the amount of time 
averaging imposed on our interpolations, while still retaining sufficient (at least 10) unique 
sample localities for the spatial interpolation calculations (Table S1). Because two of these 
analysis windows (Campanian and late Maastrichtian) still covered more than 2 million years, 
we used the global Cretaceous temperature curves of Friedrich et al. (2012) and O’Brien et al. 
(2017) to adjust our temperature data to account for secular changes to global MAT. The mean 
difference between the interpolations using the raw temperature data versus the adjusted 
temperature data is 1 °C (1.5 to 0.4 °C) for the Campanian analysis window, 0.1 °C (0.67–
0.56 °C) for the early Maastrichtian analysis window, and 0.76 °C (1.5 to 0.4) for the late 
Maastrichtian analysis window. Because the difference between the raw and adjusted 
temperatures are small and within the range of uncertainty, we report only the raw temperature 
interpolations in this study. 
 
3. Spatial interpolation methods 
 

Spatially interpolated maps of MAT were created for each analysis window using the 
inverse distance weighted (IDW) method (Shepard, 1968) as implemented in the custom 
MATLAB function gIDW (Langella, 2020) which estimates a value (e.g., MAT) for an 
unsampled location based on the weighted average of surrounding, sampled points using the 
following equation: 
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where Tj is the estimated MAT at unsampled location j, Ti is a known MAT at sampled location 
i, dij is the distance between locations j and i, n is the number of sampled locations or neighbors 
included in the weighted average, and p is the weight or power parameter applied to dij as an 
exponent such that as dij increases in magnitude, the effect of Ti on Tj decreases. Using this 
equation, the final estimated value of Tj can be adjusted by changing p and n. 

Root mean square errors (RMSE) were calculated for the interpolations by using a 
jackknife resampling approach. This involved removing one sample from our paleotemperature 
data set, performing the IDW interpolation with the remaining samples, and then comparing the 
estimated temperature at the location of the removed sample to the actual reconstructed value. 
This process was then repeated for each sample in the paleotemperature data set. Final p and n 
values were then chosen to minimize RMSE for each analysis window (Fig. S1). 
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We chose to use the relatively simple IDW method rather than a more complex statistical 
interpolation method such as Kriging for two reasons. First, the structural analysis of our 
temperature data sets did not produce semivariogram results that fit well with any commonly 
used semivariogram models (e.g., circular, spherical, exponential, linear, etc.). Second, the 
Kriging results were consistent with the IDW results, and did not provide any additional 
information. 
 
4. Identifying MAT transition zones 
 

For the purposes of this study, we define a transition zone as a contiguous latitudinal zone 
with a mean slope that is significantly more negative than the mean Late Cretaceous latitudinal 
temperature gradient (0.3 to 0.4 °C °lat-1, 4). For each of the 1000 Monte Carlo IDW iterations 
calculated for the three MAT data sets, latitudinal MAT transects were analyzed at 1° longitude 
intervals. The script identifies contiguous areas of negative MAT slopes along each transect 
where at least one cell has a slope more negative than some threshold temperature slope (see 
below). Cells within the identified latitudinal zone were then assigned a value of 1, while cells 
outside the zone were assigned a value of 0. By summing the results of this analysis for the 1000 
Monte Carlo iterations, we were able to identify how often a given cell was identified as being 
inside the steep latitudinal gradient zone (e.g., Fig. S3). Cells that were flagged as being within 
the steep latitudinal gradient zone in at least 70% of the Monte Carlo iterations were than 
considered to be within the transition zone. These calculations were performed using three 
different slope threshold values: 0.3 °C °lat-1 (minimum estimated Late Cretaceous temperature 
gradient), 0.4 °C °lat-1 (maximum estimated Late Cretaceous temperature gradient), and 0.5 
°C °lat-1 (conservative temperature gradient estimate). 

Latitudinal temperature gradients were calculated for each longitudinal transect in the 
1000 iterations of the Campanian, early Maastrichtian, and late Maastrichtian spatial 
interpolations using the following multivariate linear regression model: 

𝑀𝐴𝑇 ൌ 𝑏଴ ൅  ሺ𝑏ଵ ൈ 𝐿ሻ ൅ ሺ𝑏ଶ ൈ 𝑇𝑍ሻ ൅ ሺ𝑏ଷ ൈ 𝐿: 𝑇𝑍ሻ ൅ 𝜀 (3) 
where L is the paleolatitude, TZ is an identifier variable that indicates whether a given cell is 
inside or outside the previously described temperature transition zone, L:TZ is an interaction 
variable between L and TZ, and  is the error term associated with the linear regressions. The 
regression coefficients b0, b1, b2, and b3 are associated with L, TZ, and L:TZ, respectively. The 
interaction effect allows for two separate lines to be fit to the data, depending on whether a given 
cell is inside or outside the transition zone. For cells outside the transition zone, b0 is the y-
intercept value and b1 is the change in MAT for a one unit increase in paleolatitude. For cells 
inside the transition zone, b0 + b2 is the y-intercept value and b1 + b3 is the change in MAT for a 
one unit increase in paleolatitude. 
 
5. Fossil pollen and leaf ecoregion assignment 
 

Ecoregions simplified for paleo-applications were defined based on available information 
for sample localities (c.f., USDA Levels I and II). For sites where authors provided a detailed 
environment and/or ecosystem description, this was conserved in our analysis. For sites where no 
such description was provided, both depositional environment (either from the original study, or 
compiled from the Paleobiology Database; PBDB data downloaded from the Paleobiology 
Database on April 9, 2020) and floral assemblage (from the original study) were used to define 
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an ecoregion. For floral assemblages (both pollen and leaf), an ecoregion was identified by 
attributing fossil taxa to a modern nearest living relative (unattributed or disputed groups 
assigned conservatively at higher taxonomic levels), and then linking modern distributions 
(Omernik and Griffith, 2014) to existing low-resolution ecoregion maps. For consistency, this 
method was verified against ecoregion designations for which authors provided an original 
description, and any discrepancies or unattributable groups are noted in Data sets S3 and S4. 
 
6. Fossil pollen and leaf Dice Similarity analysis 
 

Pairwise comparisons of biodiversity using the Dice Similarity Index were performed in 
the R package fossil version 0.4.0 (Vavrek and Larsson, 2010). The resulting data set contained 
the similarity value between each formation for which pollen and leaf data was known (each data 
set analyzed separately), as well as the geodesic line distance between them (also from the R 
package fossil version 0.4.0), mean age of the formation, and the time gap between each pair of 
formations. 
 
7. Floral climatic boundary test 
 

Using the shift in temperature transition zones as a guide, we tested each integer of 
latitude from 40 to 60 degrees as being a potential boundary zone within a two-zone 
biogeographical distribution of plants during the latest Cretaceous of North America. If after 
assessing results from each of these latitudes it is found that the pattern expected of a bizonal or 
transitional biotic zonation is not present, then this would be evidence that the climatic boundary 
observed from climate proxies did not affect the distribution of plant species. 

In order to test the hypothesis that a climatic barrier caused two distinct biomes of 
vegetation, we filtered the similarity results data set into three subsets, 72 – 80 Ma, 69 – 78 Ma, 
and 66 – 75 Ma. The broad time bins for this analysis were required in order to achieve an 
adequate sample size for calculations, although we did limit the inclusion of pairwise similarity 
results to those formations that are separated by three million years or less. An advantage to 
using broad time bins is that results will be homogenized over a larger amount of time data, 
meaning that any data excursions within smaller time frames will be suppressed by data from 
other time frames, thereby producing smoother, more conserved, variation within the pairwise 
similarity indices. For each of the 20 test latitudes we categorized formations whose 
paleolatitude fell north or south of the hypothesized boundary into respective North or South 
bins. Each pairwise similarity calculation was, therefore, labeled as a North-North, North-South, 
or South-South comparison. 

This test was designed to determine the amount of statistical variation of pairwise 
similarity within and between hypothesized biomes. Consider a geographic area that is divided 
into two latitudinally-arrayed biogeographical biomes with a small zone of transition between the 
biomes. Additionally, within each biome there are several localities that preserve a particular set 
of organisms on which similarity calculations are to be made. If one were to choose a latitude 
and then calculate pairwise similarity between each of the localities within the northern and 
southern biomes, a certain amount of statistical variation would exist among the similarity values 
that is contingent upon the amount of mixing occurring within the true northern and southern 
biomes that are incorrectly lumped together within the hypothetical northern or hypothetical 
southern zones currently being tested. In other words, the greater the amount of inappropriately 
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categorized fauna/flora within a single hypothetical biome, the larger the statistical variance 
present within the similarity values of a particular zone. Likewise, for those pairwise 
comparisons that cross a biome boundary, we would expect to see greater variance in the 
distribution of similarity values closer to the biome boundary, because localities that are in 
actuality closely related but incorrectly classified in the opposite biome, will be more similar to 
one another and therefore decrease the overall statistical variance. In short, we ran consecutive 
tests of within- and between-biome variance, suggesting that the true biotic boundary—if 
present—would be found at the position that maximizes the difference between in-group 
variance (i.e., the absolute value of the difference between the northern and southern similarity 
variance) and between-group variance. Additionally, we posit that the boundaries of a 
transitional zone can be estimated by finding the latitudes where the solution to the equation 
(between-group variance – in-group variance) is minimized (note that this is not the same as the 
absolute value of the difference). 

One problem with this sliding window approach is that near the extremes of the test 
windows we will have far more formations present in one biome versus another when calculating 
variance. To accommodate this inequity, we randomly sampled 100 populations from the larger 
of the two biomes that were equal in size to the population in the smaller biome. All values from 
the subsampling and the raw cross-boundary variances were estimated and plotted with LOESS. 
These values were then standardized to 1 for plotting. 
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