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Analytical Methods and Results 26 

Sample preparation 27 

An abundant population of relatively small (approximately 100-200 µm in long 28 

dimension), equant to prismatic zircon crystals was separated from each hand sample by 29 

conventional density and magnetic methods. The entire zircon separate was placed in a muffle 30 

furnace at 900°C for 60 hours in quartz beakers to anneal minor radiation damage; annealing 31 

enhances cathodoluminescence (CL) emission (Nasdala et al., 2002), promotes more 32 

reproducible interelement fractionation during laser ablation inductively coupled plasma mass 33 

spectrometry (LA-ICPMS) (Allen and Campbell, 2012), and prepares the crystals for subsequent 34 

chemical abrasion (Mattinson, 2005). Following annealing, individual grains were hand-picked 35 

and mounted, polished and imaged by CL on a scanning electron microscope.  From these 36 

compiled images, the locations of spot analyses for LA-ICP-MS were selected. 37 

 38 

LA-ICPMS analysis 39 

LA-ICPMS analysis utilized an X-Series II quadrupole ICPMS and New Wave Research 40 

UP-213 Nd:YAG UV (213 nm) laser ablation system. In-house analytical protocols, standard 41 

materials, and data reduction software were used for acquisition and calibration of U-Pb dates 42 

and a suite of high field strength elements (HFSE) and rare earth elements (REE). Zircon was 43 

ablated with a laser raster 15 µm wide using fluence and pulse rates of ~5 J/cm2 and 20 Hz, 44 

during a 45 second analysis (15 sec gas blank, 30 sec ablation) that excavated a line ~5 µm deep. 45 

Ablated material was carried by a 1.15 L/min He gas stream to the nebulizer flow of the plasma. 46 

Quadrupole dwell times were 5 ms for Si and Zr, 200 ms for 49Ti and 207Pb, 80 ms for 206Pb, 40 47 

ms for 202Hg, 204Pb, 208Pb, 232Th, and 238U and 10 ms for all other HFSE and REE; total sweep 48 

duration is 950 ms. Background count rates for each analyte were obtained prior to each line 49 

analysis and subtracted from the raw count rate for each analyte. For concentration calculations, 50 

background-subtracted count rates for each analyte were internally normalized to 29Si and 51 

calibrated with respect to NIST SRM-610 and -612 glasses as the primary standards. Ablation 52 

pits that appeared to have intersected glass or mineral inclusions were identified based on Ti and 53 

P signal excursions, and data from those analyses were generally discarded. U-Pb dates from 54 

these analyses were considered valid if the U-Pb ratios appeared to have been unaffected by the 55 

inclusions. Signals at mass 204 were normally indistinguishable from zero following subtraction 56 



of mercury backgrounds measured during the gas blank (<100 cps 202Hg), and thus dates are 57 

reported without common Pb correction. Rare analyses that appeared contaminated by common 58 

Pb were rejected based on mass 204 greater than baseline. Additionally, elements sensitive to 59 

micro-inclusions of apatite, monazite, rutile, oxides, and melt inclusions (e.g., P, Ti, LREE) were 60 

monitored if there were excursions in these elements, these analyses were rejected and not 61 

included for interpretations in this study. Temperature was calculated from the Ti-in-zircon 62 

thermometer (Watson et al., 2006). Because there are no constraints on the activity of TiO2 in the 63 

source rocks, an average value in crustal rocks of 0.8 was used and an activity of SiO2 of 1.0 was 64 

used based on the presence of quartz in all samples (Hayden and Watson, 2007). 65 

For U-Pb and 207Pb/206Pb dates, instrumental fractionation of the background-subtracted 66 

ratios was corrected and dates were calibrated with respect to interspersed measurements of 67 

zircon standards and reference materials. The primary standard Plešovice zircon (Sláma et al., 68 

2008) was used to monitor time-dependent instrumental fractionation based on two analyses for 69 

every 10 analyses of unknown zircon. A polynomial fit to the primary standard analyses versus 70 

time yields each sample-specific fractionation factor. A secondary bias correction was 71 

subsequently applied to unknowns on the basis of the residual age bias as a function of 72 

radiogenic Pb count rate in standard materials, including Seiland, Zirconia, and Plesovice zircon, 73 

or similar materials of known age and variable Pb content. A polynomial fit to the secondary 74 

standard analyses with Pb count rate yields each sample-specific bias correction. Radiogenic 75 

isotope ratio and age error propagation for all analyses includes uncertainty contributions from 76 

counting statistics and background subtraction. Because the detrital zircon analyses are 77 

interpreted individually, uncertainties from the standard calibrations are propagated into the 78 

errors on each date. These uncertainties are the local standard deviations of the polynomial fits to 79 

the interspersed primary standard measurements versus time for the time-dependent, relatively 80 

larger U/Pb fractionation factor, and the standard errors of the means of the consistently time-81 

invariant and smaller 207Pb/206Pb fractionation factor. These uncertainties are ~2% (2σ) for 82 

206Pb/238U and ~1% (2σ) for 207Pb/206Pb. Additional details of methodology and reproducibility 83 

are reported in Rivera et al. (2013). 84 

 85 

ID-TIMS analysis 86 



U-Pb geochronology methods for isotope dilution thermal ionization mass spectrometry 87 

follow those previously published by Davydov et al. (2010) and Schmitz and Davydov (2012). 88 

All analyses were undertaken on crystals previously mounted, polished and imaged by 89 

cathodoluminescence (CL), and analyzed by LA-ICPMS. Zircon crystals were subjected to a 90 

modified version of the chemical abrasion method of Mattinson (2005), whereby single crystal 91 

fragments plucked from grain mounts were individually abraded in a single step with 92 

concentrated HF at 190°C for 12 hours. Zircon fragments were dissolved in Parr bombs at 220 93 

°C for 48 h. Dissolved zircon solutions were subsequently dried down, redissolved in 100 μl 6 N 94 

HCl and converted to chlorides in Parr bombs at 180 °C for 12 h, after which solutions were 95 

dried again and brought up in 50 μl 3 N HCl. U and Pb were isolated by anion exchange column 96 

chromatography using 50 μl columns and AG-1 X8 resin [200–400 mesh, chloride form 97 

(Eichrom); Krogh, 1973]. 98 

The U-Pb aliquot was loaded in a silica gel emitter (Gerstenberger & Haase, 1997) to an 99 

outgassed, zone-refined Re filament. Isotopic determinations were performed using an IsotopX 100 

PhoeniX-62 TIMS. A correction for mass-dependent Pb fractionation was applied based on 101 

repeated measurements of NBS 982 (Catanzaro et al., 1968) Pb on both the Daly ion counter 102 

[0.16 ± 0.03 %) amu–1; 1s] and the Faraday cups [0.10  (1 ± 0.02 %) amu–1; 1s]. Uranium was 103 

run as an oxide (UO2) and measured in static mode on Faraday detectors equipped with 1012 Ω 104 

resistors. The U mass fractionation for the same analyses was calculated using the 233U/235U ratio 105 

of the double spike solution (0.99506 % ± 0.01 %, 1s). 106 

U-Pb dates and uncertainties for each analysis were calculated using the algorithms of 107 

Schmitz and Schoene (2007), the U decay constants of Jaffey et al. (1971), and a value of 108 

238U/235U = 137.88. Uranium oxide measurements were corrected for isobaric interferences using 109 

an 18O/16O value of 0.00206. Uncertainties are based upon non-systematic analytical errors, 110 

including counting statistics, instrumental fractionation, tracer subtraction, and blank subtraction. 111 

All non-radiogenic Pb was attributed to laboratory blank with a mean isotopic composition 112 

determined by total procedural blank measurements. These error estimates should be considered 113 

when comparing our 206Pb/238U dates with those from other laboratories that used tracer solutions 114 

calibrated against the EARTHTIME gravimetric standards. When comparing our dates with 115 

those derived from other decay schemes (e.g., 40Ar/39Ar, 187Re-187Os), the uncertainties in tracer 116 

calibration (0.05%; Condon et al., 2015; McLean et al., 2015) and U decay constants (0.108%; 117 



Jaffey et al., 1971) should be added to the internal error in quadrature. Quoted errors for 118 

calculated weighted means are thus of the form X(Y)[Z], where X is solely analytical 119 

uncertainty, Y is the combined analytical and tracer uncertainty, and Z is the combined 120 

analytical, tracer and 238U decay constant uncertainty.  121 

G8 (Anorthosite from Glen Mountains Layered Complex): CL-imaging of the 50 122 

largest zircon crystals from this sample revealed a homogenous population of moderately 123 

luminescent, oscillatory to sector zoned crystals. Nine grains were selected for CA-TIMS 124 

analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in concentrated 125 

HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. All eight 126 

analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 532.49 ± 127 

0.12(0.28)[0.62] Ma (MSWD = 0.93), which is interpreted as dating the crystallization of this 128 

anorthosite. 129 

AE-389 (Rhyolite from the Arbuckle Mountains): CL-imaging of the 100 largest 130 

zircon crystals from this sample revealed a homogenous population of moderately luminescent, 131 

oscillatory to sector zoned crystals. A lesser number of crystals have irregularly shaped, 132 

relatively non-luminescent cores overgrown by aforementioned luminescent, oscillatory rims. 133 

There are also a few zircon crystals that are poorly luminescent but are oscillatory zoned and are 134 

considered to be xenocrysts. Eight grains were selected for CA-TIMS analysis on the basis of the 135 

uniform, predominant CL pattern. Chemical abrasion in concentrated HF at 190°C for 12 hours 136 

resulted in moderate dissolution of the zircon crystals. All eight analyses are concordant and 137 

equivalent, with a weighted mean 206Pb/238U date of 539.20 ± 0.15(0.30)[0.64] Ma (MSWD = 138 

0.54), which is interpreted as dating the eruption age of this rhyolite. 139 

JP-22 (Rhyolite flow from base of volcanic succession at Bally Mountain): 140 

 CL-imaging of the 100 largest zircon crystals from this sample revealed a homogenous 141 

population of moderately luminescent, oscillatory to sector zoned crystals. A lesser number of 142 

crystals have irregularly shaped, relatively non-luminescent cores overgrown by aforementioned 143 

luminescent, oscillatory rims. There are also a few zircon crystals that are poorly luminescent but 144 

are oscillatory zoned and are considered to be xenocrysts. Eight grains were selected for CA-145 

TIMS analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in 146 

concentrated HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. 147 

All eight analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 148 



530.98 ± 0.14 Ma(0.29)[0.62] Ma (MSWD = 0.94), which is interpreted as dating the eruption 149 

age of this rhyolite. 150 

JP-120 (Rhyolite flow from top of volcanic succession at Bally Mountain): 151 

 CL-imaging of the 100 largest zircon crystals from this sample revealed a homogenous 152 

population of moderately luminescent, oscillatory to sector zoned crystals. A lesser number of 153 

crystals have irregularly shaped, relatively non-luminescent cores overgrown by aforementioned 154 

luminescent, oscillatory rims. There are also a few zircon crystals that are poorly luminescent but 155 

are oscillatory zoned and are considered to be xenocrysts. Thirteen grains were selected for CA-156 

TIMS analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in 157 

concentrated HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. 158 

All thirteen analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 159 

530.70 ± 0.12 Ma(0.28)[0.62] Ma (MSWD = 0.81), which is interpreted as dating the eruption 160 

age of this rhyolite. 161 

WP16-2 (Mt. Scott Granite):  162 

 CL-imaging of the 100 largest zircon crystals from this sample revealed a homogenous 163 

population of moderately luminescent, oscillatory to sector zoned crystals. A lesser number of 164 

crystals have irregularly shaped, relatively non-luminescent cores overgrown by aforementioned 165 

luminescent, oscillatory rims. There are also a few zircon crystals that are poorly luminescent but 166 

are oscillatory zoned and are considered to be xenocrysts. Eight grains were selected for CA-167 

TIMS analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in 168 

concentrated HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. 169 

All eight analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 170 

530.45 ± 0.14 Ma(0.29)[0.62] Ma (MSWD = 0.69), which is interpreted as dating the 171 

crystallization of this granite. 172 

WP18-1 (Cache Granite):  173 

 CL-imaging of the 55 largest zircon crystals from this sample revealed a homogenous 174 

population of moderately luminescent, oscillatory to sector zoned crystals. A lesser number of 175 

crystals have irregularly shaped, relatively non-luminescent cores overgrown by aforementioned 176 

luminescent, oscillatory rims. There are also a few zircon crystals that are poorly luminescent but 177 

are oscillatory zoned and are considered to be xenocrysts. Seven grains were selected for CA-178 

TIMS analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in 179 



concentrated HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. 180 

All seven analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 181 

530.61 ± 0.13 Ma(0.29)[0.62] Ma (MSWD = 0.12), which is interpreted as dating the 182 

crystallization of this granite. 183 

JPQ-71797 (Quanah Granite):  184 

 CL-imaging of the 60 largest zircon crystals from this sample revealed a homogenous 185 

population of moderately luminescent, oscillatory to sector zoned crystals. A lesser number of 186 

crystals have irregularly shaped, relatively non-luminescent cores overgrown by aforementioned 187 

luminescent, oscillatory rims. There are also a few zircon crystals that are poorly luminescent but 188 

are oscillatory zoned and are considered to be xenocrysts. Eight grains were selected for CA-189 

TIMS analysis on the basis of the uniform, predominant CL pattern. Chemical abrasion in 190 

concentrated HF at 190°C for 12 hours resulted in moderate dissolution of the zircon crystals. 191 

Six of the eight analyses are concordant and equivalent, with a weighted mean 206Pb/238U date of 192 

530.23 ± 0.14 Ma(0.29)[0.62] Ma (MSWD = 0.12), which is interpreted as dating the 193 

crystallization of this granite. 194 
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Quoted errors for calculated 206Pb/238U weighted means are of the form ±X/Y/Z, where X is solely 
analytical uncertainty, Y is the combined analytical and tracer uncertainty, and Z is the combined 
analytical, tracer and 238U decay constant uncertainty. Each ellipse indicates the analysis of a single zircon 
grain. Dashed lines show the error bounds of the concordia curve due to the uncertainty in the decay 
constants of U. MSWD refers to the mean square of the weighted deviates. Horizontal black in the the 
weighted mean panel indicates the weighted mean date and the grey band reflects the internal 
uncertainty. Colors of the ellipses and individual 206Pb/238U bars correspond to the color of the mapped unit 
from Figure 2 in the manuscript.



Sr and Nd Isotopic Data for the Wichita Igneous Province 
 
Granites and rhyolites: εNd = +1.9 to +4.5 (Wright et al., 1996; Gilbert and Weaver, 2010). 

Basalts: εNd = +1.9 to +4.1; 87Sr/86Sri = 0.70319 (Brueseke et al., 2016). 

Diabase intrusions: εNd = +1.6 to +5.1; 87Sr/86Sri = 0.70387 to 0.70484 (Hogan et al., 1995; 

Gilbert and Weaver, 2010; Lidiak et al., 2014). 

Roosevelt Gabbro: εNd = +3.3 to +5.1 (Gilbert and Weaver, 2010). 

Glen Mountains Layered Complex: εNd = +3.6 to +5.4; 87Sr/86Sri = 0.70359 (Lambert et al., 

1988). 
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