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Table DR3: Compilation of Palacozoic geochronological data from the Arunta Region. Table
DR3 compiles U-Pb, Sm-Nd, “’Ar-*’Ar and K-Ar geochronological data from the Arunta
region for the Palaeozoic period. The compilation used the following criteria: (1) ages must
lie within the Alice Springs Orogeny timeframe (300-450/460 Ma; Buick et al., 2008), (2)
ages must have error less than orequal to20 Ma, and (3) ages were excluded when

interpreted by the author(s) to reflect a cooling age.
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Supplementary Table DR1: Characteristics of compositionally and texturally distinct rock components (C1, C2, C3) identified in outcrop and thin section; data presented is
derived from detailed field analysis and petrographic thin sections. For qualitative and quantitative thin section analyses observations were made on a suite of

representative polished thin sections cut in the structural XY plane using a petrographic microscope, the Virtual Petrographic Microscope (Tetley and Daczko, 2014) and
Imagel 1.47v (Rasband, 1997-2015). Mineral abbreviations after Whitney and Evans (2010); S1 represents the shear foliation.

No | Range Component geometry Mineral Grain | Microstructural characteristics Nature of boundaries to | Additional
of Bt (shape and dimensions) assemblage size other components Notes
content (area%)

Cl (<5% - Continuous trains of apparent pinch- | Bt (< 5%), 1-4 - Kfs exhibits a small grain size range There are two boundary | Forms 10-
and-swell structures aligned parallel | Kfs (65-75%) mm dominated by 2-3 mm, but may reach | types towards 20 vol.% of
to S1; thickness 5-10 cm; individual Pl (5-12%) up to 4 mm; grains are commonly Component 2 (note that | the shear
swells are up to 1m long, but most Qz (10-20%), rectangular exhibiting crystal facets; one individual lens/swell | zone (Fig.
commonly 20-40 cm; swell - Kfs is microcline with cross-hatched may have different 2a)
terminations are symmetrically crystal twinning (Fig. 2e), showing boundary types):
thinning towards the tips; swells are little undulose extinction and no core | a) 1-20 mm thick Bt High
up to 30 cm apart; commonly 2-5 and mantle structures; selvedges (Fig. 2b, d,e); frequency
mm seams dominated by Bt and - Pl grains (up to 2 mm) are rectangular | here Bt exhibits a strong | of lenses
minor Kfs + Qz are seen between exhibiting crystal facets; preferred orientation are seenin
swells; these are orientated parallel - PI may in some cases form interstitial | parallel to the up to 50
to S1; the geometry of the apparent grains; Component 1 cm wide,
“pinch and swell structures” closely - Pl and Kfs are commonly interlocked (lens/swell) boundaries; | S1 parallel
resembles that of the “boudin-like and without clear crystallographic or | in thick Bt selvedges bands
intrusions” of Bons et al. (2004) (Fig. shape preferred orientation (Fig. 2e; individual rectangular Kfs | dominated
2a); DR2); grains or Kfs-Qz clusters | by

- Qz grains are interstitial with frequent | may be present (Fig. 2d) | Component
- Lenses with dominantly low dihedral angles and exhibit b) no selvedges present 2 (Fig. 2d).

symmetrically thinning terminations
with long axis aligned parallel to S1
(Fig. 2d); some occur as rootless
folds with pinch-and-swell
structures (Fig. 2b); thickness range:
0.5-10 cm; aspect ratio: 2-3

connectivity in three dimensions (i.e.
interstitial grains that are spatially
separate in 2D sections exhibit the
same crystallographic orientation);
grain may show very high aspect
ratios of >8 and low dihedral angles at
their terminations forming “films”
(Fig. 2e; Vernon 2011);

Qz may show slight undulose
extinction with some minor subgrain
boundaries;

(Fig. 2d);

Towards Component 3
boundaries are
undulatory following the
shape of the lenses and
apparent pinch and
swell structures




- Qz forms <0.1mm thick, elongate
“fingers” with low dihedral angles
towards the “invaded” Ksp (Fig. 2e);
Bt is only rarely kinked and shows no
undulose extinction/crystal bending;
Bt within the bulk of the component
exhibits no preferred shape or
crystallographic orientation (Fig. 2e
inset);
- Some grain boundaries/interfaces are
irregular (Fig. 2e)

Cc2

5-25%

- occurs as continuous, S1 parallel

bands over the whole outcrop (10-
30 m);

- thickness is constant within one

continuous band and ranges from
0.1-1.20 m (Fig. 2a)

Bt (5-25%),
Kfs (30-40%),
Pl (15-20%),
Qz (15-20%)

1mm

Bt is medium grained (~1 mm),
aligned with S1 (Fig. 2b) forming the
clear foliation, rarely kinked and lacks
undulose extinction/crystal bending;
Kfs is microcline with cross-hatched
crystal twinning (Fig. 2f) , showing
little undulose extinction and no core
and mantle structures;

Qz may show slight undulose
extinction with some minor subgrain
boundaries;

Qz grains are interstitial and exhibit
connectivity in three dimensions;
grain may show aspect ratios >8
forming “films” (Fig. 2f; Vernon,
2011) and frequent low dihedral
angles (Fig. 2e);

Qz forms ~string of beads” textures
(after Holness et al. 2011)
characterized by arrays of 0.1-
0.2mm, equidimensional quartz grain
along Kfs-Kfs boundaries (Fig. 2f)

- Some grain boundaries/interfaces are
irregular, e.g. at the interfaces
between Kfs and Qz (Fig. 2f);

There are two boundary
types towards
Component 1 (see
above)

a) 1-20 mm thick Bt
selvedges (Fig. 2b, d-e);
here Bt exhibits a strong
preferred orientation
parallel to the lens/swell
boundaries;

b) no selvedges present
(Fig. 2d-e);

Towards Component 3
the boundary is sharp,
and subparallel to S1 but
irregular along its length
(Fig. 2c)

Forms main
constituent
of the
shear zone
(> 60 vol.%;
Fig. 2a);

c3

>50%

- Occurs as continuous, S1 parallel
bands over the whole outcrop (10-

Bt (> 50%),
Kfs (<30 %),

Domi-
natly

Bt is medium grained (~1 mm),
roughly aligned with S1, rarely kinked

Towards component 1
and 2 mostly sharp

Forms 15-
25 vol.% of




30 m); Pl (<5%) 1 mm and lacks undulose extinction (Fig. boundaries at the scale the shear
- thickness ranges from 0.5 cmto 1.5 | Qz (<30%), 2g); of Imm. zone

m, however it is most commonly 10- | + minor - Qz grains form low apparent dihedral

30 cm (Fig. 2a); thickness is not amounts (1- angles between two Bt grains and Within Component 2:

always constant and may vary 10%) of may form thin interstitial grains with | mm- to cm-thick seams

significantly (Fig. 2c); muscovite;, aspect ratios > 8 (Fig. 2g); of Component 3 may
- in places this component may be sillimanite, - In some cases Qz grains form connect one felsic

seen as thin, mm- to cm- scale garnet, kyanite, elongate clusters aligned with S1; lens/swell (Component

seams within component 1 and 2 staurolite, - Sillimanite/Staurolite/Muscovite, if 1) to the other resulting

(Fig. 2D; see above for details). magnetite present, are 0.2-0.5 mm in size and in zones of Component 3

occur as elongate clusters with their
elongation parallel to S1 (Fig. 2g);
Muscovite may also form an
interstitial phase with similar shape
characteristics as Qz (Fig. 2g);

Kfs (up to 3 mm) and PI (up to 2 mm)
grains are rectangular exhibiting
crystal facets and occur interlocked
with each other, these interlocked
aggregates may form felsic, elongate
clusters seen in S1 parallel trains (Fig.
2¢);

Kfs is microcline with cross-hatched
crystal twinning, showing little
undulose extinction and no core and
mantle structures.

between individual
lenses; these are
subparallel to S1 (Fig. 2;
to the right of inset box);
here Component 3 often
shows individual
rectangular Kfs grains or
elongate Kfs-Qz clusters
(Fig. 2d)
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Supplemental Figure DR2:
Photomicrograph depicting an overview of component 1 which does not show any
clear crystallographic or shape preferred orientation; note boundary between comp-

nent 1 and surrounding (white stippled line) which is characterized by high abun-
dance of biotite.



