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Figure DR1. TIMA-X TESCAN integrated mineral analyzer images of iron skarn (A) and IOA 
ores (B). 

Figure DR2. The paragenetic sequence of mineralization and alteration of the Wangbaoshan iron 
deposit. 

Figure DR3. X-ray element distribution maps showing the texture of typical garnet in the iron 
skarn ore. The color scale bar in EMPA maps represents the intensity of collected X-ray counts. 

Figure DR4. The plot of Na-Ca-Fe-K-Mg code bars on an alteration discrimination diagram from 
Montreuil et al. (2013). Chemical data from Mao et al. (2011) and references therein; Xie et al. 
(2012); Chen et al. (2014, 2016). Note: Most of the igneous rock in the Ningwu and Luzong 
district are plotted in the field of least alteration. This indicates that the high K contents of most 
igneous rocks related to IOA and iron skarn deposits reflect a metasomatized lithospheric mantle 
source for the magma rather than being caused by potassic alteration. Unlike the extensive 
albitization in the Wangbaoshan ore district, the volcanic rocks far away from the iron mine in this 
region are mostly fresh. The granitoid host rock surrounding the iron skarn often shows sodic 
alteration. 

Figure DR5. Ternary diagrams of garnet and pyroxene end members from iron skarns and IOA 
ores. Gr—grossular, Pyr—pyralspite, Ad—andradite, Di—diopside, Hd—hedenbergite, 
Jo—johannsenite. The composition of garnets and pyroxenes from the Chengchao and 
Jinshandian iron deposits, and the Fe skarn deposits worldwide are adapted from Xie et al. (2015) 
and Meinert et al. (2005). 

Table DR1. Electron microprobe analyses (wt%) of magnetite from iron skarn and iron 
oxide-apatite ores from the Wangbaoshan iron deposit, and the Meishan and Wangmujian 
prospects. 

Table DR2. LA-ICP-MS trace element compositions of magnetite from iron skarn and iron 
oxide-apatite ores in the Wangbaoshan iron deposit. 

Table DR3. Major and trace element compositions of iron skarn and iron oxide-apatite (IOA) ores 
from the Wangbaoshan iron deposit and typical IOA ores from the Meishan and Wangmujian 
prospects. 

Table DR4. Electron microprobe analyses (wt%) of garnet and diopside from iron skarn and iron 
oxide-apatite ores from the Wangbaoshan iron deposit. 
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Table DR5. LA-ICP-MS zircon U-Pb dating of diorite porphyry from the Wangbaoshan iron 
deposit, Daye district. 

Table DR6. LA-ICP-MS titanite U-Pb dating of IOA and iron skarn ores in the Wangbaoshan iron 
deposit, Daye district. 

Table DR7. LA-ICP-MS fluorapatite U-Pb dating of IOA ores in the Meishan and Wangmujian 
prospects, Daye district. 

APPENDIX 1 

Methods 

Thin sections mapping 
Typical iron skarn thin section (WBS14) and IOA ore thin section (15WBS1) were 

analyzed using the Tescan Integrated Mineral Analyzer (TIMA) mineralogy system at the Tescan 
Orsay Holding demo lab, Czech Republic. The TIMA operating system comprises a Tescan Mira 
Schottky field emission scanning electron microscope with four silicon drift energy dispersive 
(EDS) detectors. TIMA analyses were conducted at operating conditions of 25 keV using a spot 
size ~50 nm, a working distance of 15 mm and a field size set at 1500 m. The BSE image is 
obtained and used to determine individual particles and to determine boundaries between distinct 
preliminary phases. The EDX collected for each pixel is summed together based on grain 
boundaries. The spectroscopic data is then matched to mineral definition files within the TIMA 
classification scheme, where a set of rules must be satisfied for a phase to be correctly matched. 
This systematic identification of each grain allows for mineral phases within the sample to be 
identified and mapped. The mineral definition files contain mineral properties that can be used to 
determine the elemental composition, elemental deportment and density of the sample. 

Electron microprobe analysis of garnet and diopside 
A typical iron skarn sample (WBS14) and an IOA ore sample (WBS10) were collected for 

electron microprobe analysis (EMPA) and X-ray mapping of garnet and diopside in two sessions. 
Session 1 major-element analysis were determined using a CAMECA SX100 electron microprobe 
(EMP) analyzer (Masaryk University, Brno) at an accelerating voltage of 15 kV, a beam current of 
20 nA, and a beam diameter of 3 m. The following standards were used for garnet and diopside: 
albite (Na), sanidine (Al and K), wollastonite (Si and Ca), pyroxene (Mg), anatase (Ti), chromite 
(Cr), almandine (Fe), and spessartine (Mn). Session 2 was performed at the Center for Material 
Research and Analysis, Wuhan University of Technology (WUT), using a JXA-8230 Superprobe. 
Standards and unknowns were analyzed with 1 m beam diameter at 15 kV and 20 nA current. The 
peak counting time for all the elements were 20 s. The following standards were used: NaAlSi3O8 
(Na), KAlSi3O8 (K), Mg3Al2Si3O12 (Mg, Al and Si), (Ca, Fe)SiO3 (Ca), MnSiO3(Mn), FeTiO3 (Fe, 
Ti) and FeCr2O4 (Cr). 
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