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JUSTIFICATION OF PURPOSE 

A natural arch is defined as a rock exposure that has a hole completely through it formed by 

the natural, selective removal of rock, leaving a relatively intact frame (Wilbur, n.d.-a). Many rock 

arches are formed accidentally, when a combination of “microscopic” and “macroscopic” erosion 

mechanisms acts together with specific conditions such as the shape of the rock exposure, action of 

peculiar weathering processes, tectonic history, etc. These have been considered to be essential 

causes for the formation of natural arches (Vreeland, 1976; Barnes, 1987). Since various fractures 

in sandstone are commonly a clearly observable feature related to arches, many studies have dealt 

with the influence of fracturing and enhanced erosion in fracture zones in the creation of arch 

origins (Cruikshank and Aydin, 1994; Grab et al., 2011). However, no detailed mechanisms of arch 

formation have yet been given. 
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The present work was aimed on “perfectly shaped” rock arches that are formed in some 

sandstones and other granular rocks constituting materials in which the erosion is stress-controlled 

(see Bruthans et al. 2014; 2017, Filippi et al. 2018). 

 

 

STUDY SITES AND MATERIAL CHARACTERISTICS 

Physical modeling was conducted at the bottom of the Střeleč Quarry (Bohemian Cretaceous 

Basin), situated approximately 75 km NE of Prague, Czech Republic (50.493346N, 15.245163E). 

The quarry produces pure quartz sand for the glass industry. The friable sandstone and locked sand 

(SLS) was deposited during the upper Turonian and Coniacian in a shallow marine environment as 

coarse grained delta bodies (Uličný, 2001). Impressive features such as towers, arches, windows, 

etc. are developed in the wider area. The SLS is predominantly composed of fine to medium-

grained angular quartz grains (95-99% quartz). The fine fraction content (particles smaller than 25 

µm) is 1.4%, and is composed of well-ordered kaolinite (75%), quartz (24%), and illite (1%) 

(Bruthans et al., 2014). The SLS that was used for the modeling is characterized by an extreme 

contrast of tensile and compressive strengths. The uniaxial compressive strength is 2.7-3.2 MPa. Its 

tensile strength is 2-4 orders of magnitude lower than its compressive strength (Bruthans et al., 

2014; Slavík et al., 2017). A high internal friction angle (74°) and low cohesion (6 kPa), both 

determined by the drained triaxial test (Bruthans et al., 2014), are associated with a partially 

interlocked fabric of angular grains (Dusseault and Morgenstern, 1979). The effectiveness of 

erosion of SLS depends on the stress level. SLS disintegrates in standing water and is eroded by 

rain if not loaded. On the contrary, if the same specimen is loaded by an external load or by weight 

of the overburden, which creates a compressive stress locking the internal structure, it resists both 

slacking, rain, and flowing water (Bruthans et al., 2014). Further experiments (Rihosek et al., 2016) 

have demonstrated that the SLS is an excellent material for an accelerated simulation of erosion 

because of the lack of any interstitial cement. 



It is important to note that water erosion by watering can used as erosional agent of physical 

model presented in our work is just one of many erosion processes which are affected by stress. As 

demonstrated by Bruthans et al. (2014), stress is capable to orchestrate different erosion factors to 

carve similar shapes including arches (e.g. rain drop and flowing water erosion, slaking 

disintegration, removal of material due to salt and frost weathering, probably wind erosion). 

Arches National Park is very rich in rock arches (over 2000 per 31 km2), most of these 

having developed within the fin-like ridges of the Entrada Sandstone (Oberlander, 1977). Their 

presence is controlled by a joint system (Cruikshank and Aydin, 1994; Stevens and McCarrick, 

1988). Landscape Arch is about 88 m long from base to base, and is considered to be one of the 

longest arches on Earth (Dixon, 2010). In the 1990’s, several rockfall events of the arch occurred 

(Wilbur, n.d.-b). 

 

PROGRESS OF DENUDATION 

Using the frontal view, denudation of the top of the model's fin at seven different points was 

measured (Figure 1A in main article). It was revealed that during the initial stage, cross-sections I, 

II, and VII adjacent to the arch eroded, on average, at the rate of 3.2 to 6.3 mm per erosional step; 

and then the erosion rate surrounding the arch decreased to ~0.5 mm per erosional step, on average 

(Figure 1B in main article). In the mature stage (erosional step 40-85), cross-sections IV and V at 

the arch lintel showed the lowest erosion of 0.1, resp. 0.6 mm per erosional step, on average; while 

in the senile stage (erosional step 85-93), they eroded at the highest rate 4.8-4.9 mm per erosional 

step, on average. The erosion rate at cross-section VI showed a rapid erosional rate during the initial 

stage (4.4 mm per erosional step); subsequently the rate decreases to 0.6. resp. 1 mm per erosional 

step. In the case of III, the initial erosion rate was 2.5 mm per erosional step, and then it remained 

more-or-less constant, with a speed of 0.9-1 mm per erosional step. It can be seen from Figure 1A 

in main article that while both cross-sections III and VI were outlined onto abutments at erosional 

step 0, their location in relation to the arch changed during the development of the arch because the 



line of sight wasn’t aligned with the incision. The mean denudation per erosional step of the 

corresponding stage on cross-sections I-VII is illustrated on Figure 1B in main article. 

For the sake of analysis of the arch’s lintel erosion in its cross section at the center of the 

arch, the 3D photogrammetric model for each tenth erosional step was created. Area (Ai) and 

circumference (Ci) was measured on cross section of arch’s lintel to calculate Relative area (RAi), 

Relative circumference (RCi), and Mean radial recession (MRRi), in corresponding erosional step i. 

The following formulae were used: 

RAi = Ai/A0, (1) 

where Ai is the area in the step i and A0 is the area in the initial stage, 

RCi = Ci/C0, (2) 

where Ci is the circumference in the step i, and C0 is the circumference in the initial stage, and 

MRRi = (Ai-Ai-1)/Ci-1, (3) 

where Ai is the area in the step i, Ai-1 is the area in the preceding step, and Ci-1 is circumference in 

the preceding step. 

 

ARCHES ON INCLINED DISCONTINUITIES 

Development of a rock arch on an inclined discontinuity was studied on a small-scale 

physical model in the Střeleč Quarry (Figure 1). The setup of the experiment was analogous as in 

case of physical model for the arch developing on a horizontal incision. The lateral compression 

decreases erosion of the lintel which serves as a buttress of the rock face while the erosion along the 

inclined incision removes material not supporting the structure (Figure 2). Such arches commonly 

develop on an inclined discontinuity associated with vertical cliff face (Figure 3). 



 

Figure 1 Initial step of physical model of arch on 
an inclined discontinuity.  

 

Figure 2 Final step of physical model of arch on 
an inclined discontinuity. 

 

 

Figure 3 Arch developed on an inclined discontinuity. An example from Czech Paradise - Duhová 
brána (Rainbow gate) in Protected landscape area Bohemian Paradise. 

 
ADDITIONAL DISCUSSION TO ARCH FORMATION RATES 

It is usual that arch evolution in many places around the World normally occurs over 

thousands of years or more. 

Our experiment on SLS and a natural example of the La Dame Blanche (The White Lady) 

Arch in the vicinity of Dieulefit, France (http://www.naturalarches.org/blog/rapid-evolution-of-an-

arch/), shows that the process can also be very fast. The La Dame Blanche Arch consisted of a 



crumbly clay-like rock and evolved from youth through maturity to collapse in the course of just a 

few years. The arch was first observed in 2009 as a small opening in a fin of the rock, and 

culminated as a thin bridge in 2014 with a span of approximately 6 m. The arch collapsed in 2015.  

The evolution of smaller rapidly-developing arches is dominated by granular disintegration 

or the flaking of scales, so we have to be cautious extrapolating the results presented prior herein to 

larger natural arches and bridges built of firm sandstone, with significant amounts of fracturing. In 

such arches, the stress may exceed strength limits. The physical erosional model can then be 

adopted assuming some simple structural delimitations: a roughly steady rate of erosion, and 

relatively negligible size of the eroded elements. Caution must be taken when applying an erosional 

agent in order to reflect the theorized intensity and distribution of erosion under natural conditions. 

 

NOTE ON THE SUITABILITY OF LOCKED SAND AS AN ANALOGUE TO DEVELOPMENT OF 

ARCHES IN CEMENTED SANDSTONE  

Sandstone arches are dominantly developed in cemented sandstones, less commonly in 

locked sands. However, exposed surface of cemented sandstone is usually affected by weathering 

which effectively decreases cement bonding between individual grains. Framework-supported 

sandstone with cementation will be transformed on its surface to non-cohesive locked-sand during 

weathering. This superficial zone is commonly just a few mm thick. Navajo sandstone and some 

other rock types on Colorado Plateau (USA) showed decrease of tensile strength on weathered 

surfaces by several orders of magnitude to values typical for locked sand (Bruthans et al., 2014). 

 

NOTE ON THE ORIGIN OF WELL-DEVELOPED ARCHES  

Part of arches clearly originated by random failures of material with lesser importance of 

stress control on erosion (e.g. Natural Bridge in Bryce Canyon National Park). However well-

developed arches (elegant, with smooth surface and nicely curved over most of its span) are 

probably all the result of strong control of stress on erosion. Stress is the only factor that we are 

aware of, which physically interconnects all grains or building blocks in a larger scale (Bruthans et 



al. 2014) in a rock body into a single system - landform. Instant feedback of the stress field in the 

landform onto its shape makes stress the only factor capable of organizing the erosion to carve non-

random shapes. 
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