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SUPPLEMENTARY MATERIAL 8	

Below is a summary of the assumptions, method and results for the (a) homogeneity 9	

test and (b) change-point analysis; and detailed summary of the statistical methods 10	

used for (c) the statistical model to estimate the frequency-Magnitude relationship, 11	

and (d) calculation of the global recurrence rate of large-magnitude eruptions. 12	

 13	

(a) Chi-square test for homogeneity based on a contingency table 14	

A chi-square test for homogeneity is calculated using for the sum of M4 events and 15	

sum of M5-M7 events, across different values of tunique. The rationale for reducing the 16	

homogeneity test to two populations is that is reduces the degrees of freedom by half 17	

so the test statistic is more informative. The number of M4 events is chosen as a 18	

population by itself as it represents the largest variation in the record. When X2 < df 19	

the hypothesis of homogeneous populations for different values of tunique is accepted. 20	

 21	

Results: 22	

tstart X2 df pvalue 

50 ka 1060.2 500 2.2e-16 



11.7 ka 36.991 468 1 

(b) Change-point analysis of Magnitude 4 events in the Holocene dataset 23	

A change point for the number of magnitude 4 events is calculated using the 24	

segmented package in R1, which uses a dummy variable to identify a change point in 25	

a linear regression by maximum likelihood fitting. 26	

 27	

1(https://cran.r-project.org/web/packages/segmented/segmented.pdf) 28	

 29	

(c) Hierarchical Bayesian Analysis 30	

To statistically characterise the frequency-Magnitude (f-M) relationship for 31	

volcanic eruptions we use the methodology set out in Sheldrake (2014), which is 32	

based on analysing the proportion of different events. A hierarchical Bayesian 33	

approach is employed, which quantifies the common distribution of eruptions for a 34	

group of analogous volcanoes, whilst recognising that each volcano has a unique 35	

record. Each of the individual eruptive records is considered exchangeable, and so 36	

each volcano is assumed to be able to produce an eruption between M4 and M7. In 37	

terms of magmatic processes, this assumption is akin to saying that there is a common 38	

process determining the frequency of eruptions of various magnitudes globally, but at 39	

an individual volcano this common process may only manifest in a particular sub-set 40	

of the state space. 41	

The statistical model has three hierarchies: 42	

(a) Eruptive records, or data, which represent the likelihood of each eruption 43	

magnitude (j) at each volcano (i), and is characterised as a multivariate dataset (i.e. 44	

mutually exclusive events): 45	

,௜,௝ߠሺ݅ݐ݈ݑܯ	~	௜,௝ݔ ௝݊ሻ. 46	



(b) Prior distribution, which characterises the common processes associated with the 47	

accumulation and eruption of eruptible magma that are responsible for the recurrence 48	

rate of volcanic eruptions. The prior is modelled using a Dirichlet distribution, as we 49	

characterise eruption magnitude as a continuous multivariate dataset where the 50	

probability of the different magnitudes (θj) adds to unity at each volcano. The 51	

Dirichlet distribution is parameterised by a series of alpha parameters (αj), which is 52	

advantageous as it does not put any restrictions on the shape of the distribution, 53	

allowing different behaviours to be identified for different groups of volcanoes: 54	

	௝ሻ. 55ߙሺݎ݅ܦ	~	௜,௝ߠ

(c) Hyperprior distributions, which allow the prior distribution to be uninformative, 56	

and thus only determined by only the data in the model and not by subjective 57	

judgement. The hyperprior distributions (φj, ψ) are rearranged in terms of the alpha 58	

parameters of the Dirichlet distribution (αj):  59	

௝ߙ ൌ
ఝሺୣ୶୮	ሺథೕሻ

௃ିଵାୣ୶୮	ሺథೕሻ
, 60	

where J is the total number of eruption scenarios (i.e. number of eruption magnitudes 61	

= 4). Each hyperprior is chosen so that the before observing the data each magnitude 62	

is equally likely. 63	

 The fist hyperprior characterises the variability in the data between each of the 64	

volcanoes, and so is a distribution on α0, which is the sum of all the αj parameters: 65	

߰ ൌ ଴ߙ	 ൌ 	௝, 66ߙ∑	

In the case where the model is uninformative each aj=1 and so the minimum value of 67	

a0 is the sum of these parameters (in the case here this is the number of Magnitude 68	

states = 4), and where the data is fully informative the value of a0 is equal to the total 69	

number of eruptions or observations in the analysis (K, which in the case here is 70	



1,766). Hence, the first hyperprior is parameterised as a uniform distribution between 71	

these two values: 72	

߰	~	ܷ݂݊݅ሺ4, 1766ሻ. 73	

The second hyperprior is a distribution of the logit of the mean probability for 74	

each magnitude multiplied by (J – 1): 75	

߶௝ ൌ log	൬
ሺ௄ିଵሻఈೕ
ఈబିఈೕ

൰. 76	

In the case where each magnitude is equally likely this will equal zero, and so the 77	

second hyperprior is parameterised as a diffuse distribution centred on zero: 78	

߶௝~݈ܰܽ݉ݎ݋ሺ0,1000ሻ. 79	

There are two outputs of the statistical model, the prior and posterior 80	

distributions. The prior distribution is calculated based on a combination of the total 81	

number of events for each magnitude, the variation in the proportions of each 82	

magnitude at individual volcanoes, and the total number of events observed at each 83	

volcano. Once the prior distribution is calculated, the posterior distribution that is 84	

unique to each individual volcano can be calculated. To characterise the behaviour of 85	

a group of volcanoes, or to compare the behaviour of different volcanoes, we 86	

characterise a group of posterior probabilities for different eruption magnitudes (m) 87	

using a power-law distribution: 88	

Prሺܯ ൌ ݉ሻ~	ߛ௠. 89	

For Magnitude 4 -7, this becomes with the appropriate normalisation to unit mass: 90	

Prሺܯ ൌ ݉ሻ ൌ ఊ೘షర

ଵା	ఊା	ఊమାఊయ
ൌ ሺଵିఊሻఊ೘షర

ଵିఊర
		. 91	

 92	



To fit the power law we use a non-hierarchical version of the Bayesian method 93	

in Bebbington (2014), with the reference distribution for γ is a diffuse log normal 94	

distribution: 95	

,ܰሺ0	~	ሻߛሺ݃݋݈ 10ଷሻ. 96	

To perform the statistical analysis we use a Markov Chain Monte Carlo 97	

analysis using RStan1. 98	

 99	

1Carpenter, B., et al., 2016, Stan: A probabilistic programming language: Journal of 100	

Statistical Software (in press). 101	

 102	

(d) Calculation of the recurrence rate of large-magnitude eruptions during the 103	

Holocene 104	

To estimate the global recurrence rate of eruptions of different magnitude, we 105	

fit a power-law using the assumptions stated in the main text. We solve for the under-106	

recording parameter λ by using the value of γ from the analysis of the global record 107	

and rearranging the following equations: 108	

(1) the proportion of eruptions that are Magnitude 4: 109	

ସߠ ൌ 	
ሺଵିఒఊሻሺఒఊሻబ

ଵିሺఒఊሻర
; 110	

(2) the proportion of eruptions that are Magnitude 7: 111	

଻ߠ ൌ 	
ሺଵିఒఊሻሺఒఊሻయ

ଵିሺఒఊሻర
; 112	

(3) the expected number of Magnitude 4 events in the Holocene, where X4:1961 is the 113	

number of Magnitude 4 events observed globally at arc volcanoes between 1961 – 114	

2000 (based on 95% confidence that a change point in under-recording occurred after 115	

this date; Furlan, 2010) and normalised to the duration of the Holocene: 116	



ସܰ ൌ 	ܺସ:ଵଽ଺ଵ ∙
ଵଵ,଻଴଴

ଶ଴଴଴ିଵଽ଺ଵ
; 117	

(4) the expected number of Magnitude 7 events in the Holocene: 118	

଻ܰ ൌ 	
ேర

ఏర
ఏళ
ൗ

; 119	

(5) the level of completeness for Magnitude 7 events in the Holocene, which is 120	

estimated to be 70% (Brown et al., 2014):  121	

ேళ
௑ళ
ൌ 0.7. 122	

123	
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