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SUPPLEMENTARY METHODS AND RESULTS 1 

Paulsen et al. (2016) describe the samples and methods used for zircon separation, 2 
imaging, and U-Pb age analysis, the results of which are shown in Figure 2A for the 800-3 
400 Ma U-Pb zircon population. For zircons large enough to accommodate another laser 4 
ablation spot, trace elements were measured using the same grain mount and the same 5 
LA-ICP-MS instrument, as described in Paulsen et al. (2016), in an effort to determine 6 
the source rock provenance of the igneous zircons.  Where possible, laser spots were 7 
selected within the same zone, though the small size of the majority of zircons mostly 8 
precludes this possibility.  A typical analysis consisted of: (1) 5 cleaning pulses, followed 9 
by (2) 17 seconds of washout, (3) 22 seconds of gas blank, and (4) 40 seconds ablation 10 
time followed by 5 seconds of waiting time before moving the stage.  Two standards 11 
(either NIST610 or NIST612 synthetic glass standards) were dispersed every 30 analyses 12 
and used for drift correction.  Zircon reference material 91500 was analyzed once in 13 
every block of samples as a secondary reference material.  Drift correction and data 14 
reduction were carried out with the MATLAB-based SILLS software (Guillong et al., 15 
2008), and trace element concentrations were normalized to a Si value of 151682 ppm 16 
(equivalent to the Si content in a grain that is 99% ZrSiO4).  Individual spot analysis error 17 
is difficult to quantify, but long-term laboratory reproducibility of homogenous glass 18 
standards indicates a precision of better than 5 rel. % for element >>LLOD. The trace 19 
element analytical data are reported in Table DR2. 20 

One-way Means ANOVA (analysis of variance), was performed on the zircon 21 
trace element ratios used as proxies for various parameters related to arc evolution. This 22 
method was used to analyze the significance of differences among the groups’ means and 23 
the variation. In our model the groups are trace element ratios for 20 Myr. increments 24 
used as a proxy for slab fluid addition (Fig. DR3), crustal input (Fig. DR4), and crustal 25 
thickness (Fig. DR5). We show additional examples of ratios for crustal input and 26 
thickness that also have similar patterns. The Sr/Y ratio is commonly utilized as a proxy 27 
for crustal thickness (e.g. Profeta et al., 2015; Chapman et al., 2015); however, the low 28 
abundance of Sr in zircon prevented accurate measurement for calculating this ratio. 29 
Therefore, we use other ratios (Yb/Gd and Y/Gd) for the crustal thickness proxy with 30 
elements that are in high abundance in zircons similar to Barth et al. (2013). All zircons 31 
are from granitoid parent rocks (see below) and were chosen from a restricted range of Hf 32 
contents (10-12k) to reduce the effects that melt compositional evolution might have on 33 
the ratios. The Hf range does not encompass the highest values in the dataset in an effort 34 
to specifically avoid the compositional influence of late-stage accessory phase 35 
crystallization. Importantly, there is no correlation between Hf and any of the trace 36 
element ratios, which demonstrates that melt evolution has a negligible effect on these 37 
ratios within the chosen range of Hf. 38 

We applied the ‘Long’ classification and regression tree analysis (CART) to the 39 
zircon trace element data following Belousova et al. (2002), who showed that igneous 40 
parent rock type could be distinguished with >80% confidence for carbonatites (84%), 41 
syenites (100%), Ne-syenite and syenite pegmatites (93%), and dolerites (84%). Zircons 42 
from other granitoids (65-70% SiO2, 70-75% SiO2, >75% SiO2, and larvikites, a high-k 43 
granitoid) were distinguished with a >80% confidence with further subdivision into SiO2 44 
classes commonly yielding misclassification primarily into higher or lower SiO2 content 45 
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and therefore lower confidence (Belousova et al., 2002). Basalts were distinguished with 46 
a 47% confidence (Belousova et al., 2002). We excluded zircons with U/Th ratios >10 47 
ppm (n=47) from the CART analysis because the higher ratio can develop as a 48 
consequence of metamorphism (Hoskin and Schaltegger, 2003; Gehrels et al., 2009) and 49 
intra-crystalline age variation indicates cases where high U/Th ratios correlate with 50 
younger rims that surround older cores (Paulsen et al., 2016).  51 

The 800-400 Ma U-Pb zircon ages are shown according to rock type in Figs. 2B 52 
and 3A-D on probability density diagrams (from Ludwig, 2003). These diagrams show 53 
each age and its uncertainty (for measurement error only) as a normal distribution, and 54 
sum all ages from a rock type into a single curve. The curves for the different rock types 55 
have been superimposed to identify the relative relationships between the probability 56 
peaks and lows. Dashed line in Fig. 3B represents relative probability age distribution of 57 
alkaline and carbonatite igneous crystallization ages from the Koettlitz Glacier alkaline 58 
suite (Worley et al., 1995; compiled ages from Cooper et al., 1997; Mellish et al., 2002; 59 
Read et al., 2002; Cottle and Cooper, 2006; Read, 2010; Martin et al., 2014; Hagen-Peter 60 
and Cottle, in press). White mica 40Ar/39Ar age data (n=200) in Fig. 3D are from Di 61 
Vincenzo et al. (2015). Dashed line in Fig. 3D represents relative probability age 62 
distribution yielded by the analysis of the subordinate 800-570 Ma white mica 40Ar/39Ar 63 
ages (n=35 of the cumulative 200 analyses) alone to vertically exaggerate the older 64 
portion of the probability curve (schematically indicated by white arrows) to better 65 
delineate relationships with respect to the granitoid peaks and troughs. 66 

The age ranges and peak ages of clusters reported below were determined using 67 
the Age Pick Excel program (2009) of G. Gehrels available at the Arizona LaserChron 68 
Center (www.geo.arizona.edu/alc). The age ranges and peak ages require three or more 69 
age contributions at the 2-sigma level. The Age Pick program yields the numbers of grain 70 
ages that fall within an age range (not the number of analyses that make probability 71 
contributions to define the age range). The Age Pick program also yields the numbers of 72 
analyses that contribute to an age probability peak at the 2-sigma level. Probability peaks 73 
are required to have probability contributions from three or more overlapping analyses. 74 
We use the 2015 International Chronostratigraphic Chart timescale (Cohen et al. 2013, 75 
updated) where we discuss the age peaks below. 76 

 77 

Granitoid Zircons 78 

A total of 233 of 371 granitoid (granitoid >65% SiO2 and larvikite in Belousova 79 
et al., 2002) U-Pb age analyses met acceptable concordance thresholds (Fig. 2B). The 80 
dominant age cluster yielded by the cumulative analysis ranges from 805–470 Ma 81 
(Tonian-Ordovician), contains 231 ages, and has 24 peaks in age probability at 792 Ma 82 
(n=6), 765 Ma (n=4), 753 Ma (n=4), 737 Ma (n=6), 703 Ma (n=22), 677 Ma (n=5), 657 83 
(n=7), 650 (n=7), 638 (n=8), 625 (n=14), 605 (n=13), 593 (n=22), 579 (n=19), 572 84 
(n=23), 559 (n=15), 538 (n=16), 517 (n=13), 512 (n=9), 505 (n=13), 493 (n=8), 488 85 
(n=5), 481 (n=5), and 473 (n=4).  86 

Mafic Zircons 87 
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A total of 58 dolerite (n=48/60) and basalt (n=10/18) U-Pb age analyses met 88 
acceptable concordance thresholds (Fig. 3A). The two dominant age clusters yielded by 89 
the cumulative analysis ranges from 610–572 Ma (Ediacaran; n=19) and from 565–533 90 
Ma (Ediacaran-Cambrian; n=15) and include 7 peaks in age probability at 604 Ma (n=7), 91 
596 Ma (n=3), 584 Ma (n=7), 576 Ma (n=7), 564 Ma (n=3), 555 Ma (n=6), and 547 Ma 92 
(n=9). Two additional clusters range from 692–672 Ma (Cryogenian; n=5 ages) and 650–93 
634 Ma (Cryogenian-Ediacaran; n=5 ages) and include 5 age probability peaks at 687 Ma 94 
(n=3), 676 Ma (n=4), 647 Ma (n=4), and 641 Ma (n=5). One additional age probability 95 
peak also occurs at 628 Ma (n=3). Zircons in basalts are expected to be rare. Indeed, the 96 
basaltic zircons in Belousova et al. (2002) have the highest potential for being 97 
misclassified (47% confidence). However, these 'basaltic' zircons are more likely to be 98 
sourced from doleritic (plutonic) rocks given that most basalt will not be saturated in 99 
zircon until they are at low temperatures and mostly crystalline and the melt in 100 
equilibrium with those crystals has become evolved and the zirconium concentration has 101 
increased sufficiently (Hanchar and Watson, 2003). Hafnium is used as a proxy for melt 102 
evolution; increasing Hf with increasing SiO2. Therefore, the low Hf zircons that are 103 
classified as 'basaltic' would still likely be derived from a mafic magma similar in 104 
composition to a dolerite. We have included these 'basaltic' zircons for the sake of 105 
completeness for representing the mafic source rocks. Excluding these zircons does not 106 
significantly impact these results.. 107 

Carbonatite/Alkaline Zircons 108 

A total of 53 carbonatite (n=22/27) and alkaline (syenite, n=30/34; Ne-109 
syenite/syenite pegmatite, n=1/2) U-Pb age analyses met acceptable concordance 110 
thresholds (Fig. 3B). The dominant age cluster yielded by the cumulative analysis ranges 111 
from 629–546 Ma (Ediacaran), contains 45 ages, and has 8 peaks in age probability at 112 
625 Ma (n=3), 605 Ma (n=9), 591 Ma (n=10), 584 Ma (n=11), 576 Ma (n=12), 566 113 
(n=5), 558 Ma (n=8), and 552 Ma (n=9). These 591-576 Ma age probability peaks are 114 
similar to 593–572 Ma age probability peaks (584 Ma average) reported for alkaline 115 
(carbonatite and syenite) detrital zircons yielded by 4 Neogene beach sands and a Triassic 116 
sandstone in eastern Australia, which paleocurrent data suggest are derived from Wilkes 117 
Land just to the west of the NVL study area in Antarctica (Veevers et al., 2006; Veevers, 118 
2007).  119 

Metamorphic (U/Th>10) Zircons 120 

A total of 33 of 42 metamorphic (U/Th>10) U-Pb age analyses met acceptable 121 
concordance thresholds (Fig. 3C). The 4 dominant age clusters yielded by the cumulative 122 
analysis range from 665–643 Ma (Cryogenian; n=4), 625–613 Ma (Ediacaran; n=3), 611–123 
602 Ma (Ediacaran; n=3), and 540–528 Ma (Cambrian; n=3). These include 5 peaks in 124 
age probability at 658 Ma (n=3), 648 Ma (n=4), 618 Ma (n=4), 607 Ma (n=5), and 532 125 
Ma (n=3). Four additional age probability peaks also occur at 628 Ma (n=3), 582 Ma 126 
(n=4), 556 Ma (n=3), and 546 Ma (n=4). 127 

White Mica 128 

A cumulative analyses of a total of 200 white mica 40Ar/39Ar age analyses from 129 
Di Vincenzo et al. (2014) yielded a dominant age cluster ranging from 633–477 Ma 130 
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(Ediacaran-Ordovician) (Fig. 3D). This cluster contains 188 ages and has 24 peaks in age 131 
probability at 631 Ma (n=3), 622 Ma (n=4), 614 Ma (n=5), 607 Ma (n=4), 604 Ma (n=5), 132 
598 Ma (n=4), 593 Ma (n=6), 590 Ma (n=6), 584 Ma (n=6), 566 Ma (n=6), 561 Ma 133 
(n=12), 557 Ma (n=17), 552 Ma (n=17), 546 Ma (n=15), 533 Ma (n=22), 529 Ma (n=23), 134 
524 Ma (n=22), 521 Ma (n=21), 515 Ma (n=17), 507 Ma (n=11), 503 Ma (n=7), 494 Ma 135 
(n=12), 485 Ma (n=16), and 480 Ma (n=9). One additional cluster ranges from 468–462 136 
Ma (Ordovician; n=3 ages) and includes 1 age probability peak at 465 Ma (n=3). 137 

 138 
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249 

SUPPLEMENTARY FIGURE CAPTIONS 250 

Supplementary Figure DR1. Simplified geologic map showing intrusive, sedimentary, 251 
and metamorphic basement rocks of the Ross orogen in north Victoria Land. 252 
Tectonostratigraphic differences across the area have led to the definition of the Wilson, 253 
Bowers, and Robertson Bay terranes, which are separated from their respective neighbors 254 
by regional fault zones (Crispini et al., 2014). Comparative analysis of detrital zircon age 255 
populations indicates that inboard stratigraphic successions (Wilson Terrane) and those 256 
located outboard of the East Antarctic craton (the Bowers and Robertson Bay terranes) 257 
have similar ~1200-950 Ma (Mesoproterozoic-Neoproterozoic) and ~700-490 Ma (late 258 
Neoproterozoic-Cambrian, Furongian) age populations (Paulsen et al., 2016; Estrada et 259 
al., in press). The affinity of the age populations of the sandstones to each other, as well 260 
as Gondwana sources and Pacific-Gondwana marginal stratigraphic belts, indicates that 261 
the outboard successions do not represent form exotic terranes that docked with 262 
Gondwana during the Ross orogeny and instead places the provinces in proximity to each 263 
other and within the peri-Gondwana realm during the late Neoproterozoic to Cambrian 264 
(Paulsen et al., 2016), in agreement with the conclusions reached by other authors 265 
(Kleinschmidt and Tessensohn, 1987; Ferraccioli et al., 2002; Tessensohn and Henjes-266 
Kunst, 2005; Federico et al., 2006; Rocchi et al., 2011; Crispini et al., 2014; Estrada et 267 
al., in press). White stars indicate approximate locations of detrital zircon samples 268 
analyzed in this paper and black stars indicate approximate locations of detrital white 269 
mica samples analyzed by Di Vincenzo et al. (2015) for north Victoria Land. Figure 270 
compiled from Stump (1995) and Läufer et al. (2006). 271 

272 

273     Supplementary Figure DR2. Summary plot and statistics for One-way Means ANOVA 
274     (analysis of variance). Plot show means (center line in diamond) with 95% confidence 
275     intervals (upper and lower horizontal lines near apexes) for U/Yb through time. Time 
276     increments are 20 Myr. The ratios are assumed to increase with increasing slab-derived 
277     fluid addition due to the high mobility of U in fluids relative to other elements. The plot 
278     shows a broad peak in the U/Yb ratio over the period from 640-520 Ma. 

279  

280 Supplementary Figure DR3. Summary plots and statistics for One-way Means ANOVA 

281 (analysis of variance). Plots show means (center line in diamond) with 95% confidence 
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intervals (upper and lower horizontal lines near apexes) for Th/U and Th/Yb through 282 
time. Time increments are 20 Myr. The ratios are assumed to increase with increasing 283 
crustal input due to enrichment in Th relative to other elements as the Proterozoic crust 284 
evolved. The plots show that a statistically significant difference exists between zircons 285 
that occur from 500-460 Ma and 620-560 Ma, and those through the rest of the period 286 
from 800-400 Ma. 287 

288 

289     Supplementary Figure DR4. Summary plots and statistics for One-way Means ANOVA 
290 (analysis of variance). Plots show means (center line in diamond) with 95% confidence 
291 intervals (upper and lower horizontal lines near apexes) for Yb/Gd and Y/Gd through 
292 time. Time increments are 20 Myr. The ratios are assumed to decrease with increasing 
293 crustal thickness due to the preferential incorporation of HREE (Yb) or Y into garnet. 
294 The presence of garnet in crustal magmas is indicative of high pressure. The plots show 
295 that a statistically significant difference exists between zircons that occur from 620-560 
296 Ma compared to the rest of the period from 800-400 Ma. This is interpreted as a period 
297 where the thickest crust existed. 
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Supplementary Figure DR3. 
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