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In our paper we present the results of a single simulation of the Chesapeake Bay impact event.  

To understand the variability of our results and the sensitivity to model parameters, and to 

justify our selection of a best-fit case, we present here some alternative simulations and 

elaborate on the details of our modeling. 

 
Description of constitutive model (adapted from Collins et al., 2004) 
 
The complexity involved with accurately simulating impact events to late stages resides in 

how to prescribe the appropriate yield strength for a given cell of material in the target.  Rock 

mechanics experiments show that the critical stress at the onset of failure is a function of 

confining pressure, temperature, strain rate, porosity and sample size.  Furthermore, brittle 

materials show two distinct types of failure mechanism: tensile failure and shear failure.  The 

following discussion details the constitutive model used in the simulations presented in this 

paper.  The algorithm stems largely from the work of Boris Ivanov (for example, Ivanov et 

al., 1997), supplemented by recent collaboration between Boris Ivanov, Jay Melosh and the 

authors.  This description was adapted from Collins et al. (2004). 

 

Shear Failure 

 

iSALE treats the target as an elastic-plastic solid.  This means that the rheologic stress in a 

given cell is linearly related to the strain, for stresses below the yield stress or strength.  

Above this yield stress the material behaves plastically, in the sense that deformation is 

permanent, and the stress is limited by the yield stress.  The procedure for implementing this 

scheme is to compare an invariant measure of stress in a cell with the prescribed yield stress.  

The stress invariant used in iSALE is the second invariant of the deviatoric stress tensor J2, 

given by: 
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where eiσ  are the elastic principal stresses in cylindrical coordinates.  The elastic principal 

stresses are computed from the elastic deviatoric stresses, which are defined by the elastic 
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deviatoric strain components.  These are updated each time step by first assuming that all 

deformation is elastic.  If J2 exceeds the square of the yield strength Y, then shear failure has 

occurred: the updated elastic deviatoric stress components (and deviatoric elastic strains 

components) must be reduced to the yield envelope by multiplying by the factor Y/√J2.  The 

remaining strain (the difference between the elastic deviatoric strain components before and 

after the yield correction is applied) is the plastic strain. 

 

To approximate the effect of pressure on yield strength for intact rock Yi, we use a smooth 

approximation to experimental data first defined by Lundborg (1968): 
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where Y0 is the shear strength at zero pressure, µi is the coefficient of internal friction and YM 

is known as the von Mises plastic limit of the material.   

 

For completely fragmented rock material, we use a Coulomb dry-friction law (Stesky et al., 

1974).  In this case the yield strength is given by: 

pY dd µ= ,     (A3) 

 

where µd is the coefficient of friction for the damaged material.  This relationship is only valid 

for confining pressures where Yd < Yi; at pressures above this the shear strength follows the 

same pressure dependence given by Equation A2, regardless of damage.  

 

For partially fragmented material a quantity called “damage” D is defined, which takes a 

value of between 0 for completely undamaged, to 1 for totally damaged material.  The 

damage quantity may then be used to define intermediate yield strengths according to the 

equation (after Ivanov et al., 1997): 

 

di DYYDY +−= )1( .     (A4) 

 

Damage may be accumulated due to shear deformation or tensile failure.  Here we separate 

the two mechanisms and define the total damage D as the sum of the tensile damage Dt, 

which will be discussed in the next section, and the shear damage Ds.  Following the scheme 

of Johnson and Holmquist (1993), among others, we define the shear damage as the 
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integrated plastic strain εtot divided by the accumulated plastic strain at the point of failure εf, 

which is known to be a function of pressure, temperature and material type: 
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The integrated plastic strain is calculated by adding an invariant measure of the plastic strain 

accumulated in the time step each cycle.  Thus, the total plastic strain totε  is given by a sum 

over all time-steps n = 1 to ntot: 
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where nt∆  is the duration of the nth time step and nΕ&  is an invariant measure of the plastic 

strain rate in that step, defined in cylindrical coordinates by: 
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where ni,ε& are the principal plastic strain rate components for the nth cycle.    

 

To define the plastic strain required for complete failure, we adopt the philosophy presented 

in Evans and Kohlstedt (1995), where shear failure occurs within one of three regimes: brittle, 

semi-brittle and plastic, depending on the confining pressure (see Fig. 1).  For low confining 

pressures, where the strength of the damaged material is less than that for intact specimens (Yd 

< Yi), the plastic strain at failure rises from 0.01 at zero pressure, to 0.05 at the brittle-ductile 

transition pressure pbd. In this regime rock failure is by discrete brittle failure along 

microcracks.  Failure occurs after minimal plastic strain and the strength drop due to damage 

is significant.  Hence, strong strain localization is expected.  In contrast, for very large 

confining pressures, where the pressure is greater than twice the shear strength (p > 2Y), we 

define the plastic strain at failure to rise abruptly from 0.1 at the brittle-plastic transition 

pressure pbp to 1 at twice the brittle-plastic transition pressure.  In the semi-brittle regime, 

which lies in the pressure range pbd < p < pbp, we define the plastic strain at failure to rise 

linearly from 0.05—0.1.  This reflects the deformation regime which includes both brittle 

fracture and ductile flow.  Rock deforming in this regime will show signs of brittle failure, 

however, the damage has no effect on the yield strength. 
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The shear strength of rock materials also depends on temperature (see for example, Jaeger and 

Cook, 1969).  As the material approaches the melting temperature the shear strength drops off 

to zero at the melting temperature.  We approximate this behavior using the simple 

relationship (after Ohnaka, 1995): 
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where T and Tm are the ambient and melt temperature respectively and ξ is a material 

constant. 

 

The complete shear strength algorithm is as follows.  The shear strength of the material in the 

cell is determined based on the current pressure, temperature and damage.  The stress in the 

cell is calculated assuming that all the strain can be accommodated elastically.  If this stress 

exceeds the yield strength, the elastic stresses and strains are reduced and the remaining strain 

is accommodated plastically.  This plastic strain is recorded and used to determine the shear 

damage by dividing it by the plastic strain at failure, which is a function of pressure.  The 

total damage in the cell to be used in the subsequent time step is this shear damage plus any 

tensile damage that may have accumulated.  Tensile failure was not modeled in our 

simulations of the Chesapeake Bay impact. 

 

Acoustic Fluidization 

 

To facilitate complex crater collapse we also include the effect of transient, high-frequency 

pressure oscillations in the target surrounding the impact point.  These pressure fluctuations 

modify the frictional strength of the damaged target by temporarily reducing the overburden 

pressure; hence, allowing temporally- and spatially-localized slip between rock fragments.  

The time- and space-averaged result of these small-scale slip events is that the rock mass 

takes on a fluid-like rheology from a macroscopic point-of-view.  This process is known as 

acoustic fluidization (Melosh, 1979).  The acoustic fluidization algorithm implemented in 

iSALE follows the “block-model” approximation of Ivanov and Kostuchenko (1997).  The 

algorithm is discussed in detail in Melosh and Ivanov (1999).  Briefly, the sub-crater fractured 

target material is assumed to comprise of large rock blocks surrounded by a matrix of much 

smaller fragments.  The vibrational velocity of these blocks is assumed to be a fraction (cvib) 
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of the maximum particle velocity Umax in the shock wave that engulfs the block zone, and is 

assumed to decay exponentially with time t after the shock-wave passes: 

 ( ),.,200min /
max

decTt
vibvib eUcv =  (A9) 

In this expression Tdec is the characteristic decay time of the vibrations (an input parameter); 

the minimum ensures that the vibrational velocity in a cell never exceeds a prescribed limit, 

taken to be 200 m/s.  The pressure associated with these vibrations in a given cell is taken to 

be 

 ,vibsvib vcp ρ=  (A10) 

where ρ is the bulk density of the cell and cs is the bulk sound speed of the cell.  The yield 

strength of a cell within the block zone is modified by this vibrational pressure according to 

the expression: 

 ( ) ,limερυµ &+−= vibdvib ppY  (A11) 

where υlim is the kinematic viscosity of the acoustically fluidized cell and ε&  is an invariant 

measure of the strain rate in the cell (c.f. Eq. A7).  The yield strength in a cell is set equal to 

Yvib if this is less than the standard yield strength (given by Eq. A4). 

 

Model parameters for simulations of Chesapeake Bay impact 
 
Table DR1 and Figures DR1-DR3 present the constitutive model parameters used in the five 

simulations of the Chesapeake Bay impact presented here.  The results of Model 1 are 

presented in the paper, in Figure DR4, and in an animation accompanying this document.  

Models 2-5 are presented only as animations accompanying this supporting material.  We 

present these alternative models to illustrate the variability in our results and our reasons for 

considering Model 1 to be the best fit to observational constraints. 

 

All models employed identical strength models for the granite basement.  Model 3 used an 

alternative damage model to all other models; in this case the plastic strain at failure εf (Eq. 

A5) was reduced relative to the other models (see Fig. DR3). 

 

All models employed identical strength models for the intact sediments (see Figs. DR1 and 

DR2).  In Model 1 (our best-fit model), Model 2 and Model 4 we used a very low coefficient 

of friction for the damaged sediments (µd = 0.01; pink dashed line in Figs DR1 and DR2); in 

this case the damaged sediments were almost strengthless.  In Model 3 and 5 a higher value 

was used for the coefficient of friction for the damaged sediments. 
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Discussion 

 

Figure DR4 shows the results from Model 1.  The figure supplements Figure 2 in the paper, 

showing plots of total plastic strain on the left and accumulated damage on the right.  The first 

two time frames (t = 5 and 45 s) illustrate the growth of the cavity and the shock-induced 

damage and deformation in the surrounding target.  The later frames illustrate the collapse 

and infilling of the cavity, and the inward movement of the fluidized sediments. The figure 

illustrates the tremendous difference between the amount of deformation in the sediments 

versus the basement rocks in the outer basin.  Also evident is the disruptive influence of the 

ejecta layer as it lands and interacts with the partially shock-damaged sediments.   

 

The difference between Model 1 and Model 2 illustrates the effect of varying the impactor 

size.  That is, all model parameters in Model 2 are the same as in Model 1 except for impactor 

diameter (and appropriately-scaled acoustic fluidization parameters), which is 4.6 km in 

Model 2, and 3.2 km in Model 1.  In this case, uplift of the basement beneath the transient 

crater rim occurs much further out than the ~20 km inner ring observed at Chesapeake Bay.  

Furthermore, the inner basin is significantly deeper than in Model 1, and the sedimentary unit 

is much more deformed.  This places a good constraint on the impactor diameter, provided 

that the weak strength model used for the sediments is applicable.  In other simulations (not 

shown), in which the sedimentary unit was assumed to be stronger, inward collapse of the 

sediments was prevented by inherent strength and the uplifted rim of basement.   

 

Model 3 illustrates an alternative dynamic model for the formation of the inner ring that is 

analogous to the suggested model for peak-ring formation at Chicxulub (Collins et al., 2002).  

In this model, the basement rock becomes damaged at a smaller strain; consequently, the 

target is weaker and the acoustically-fluidized zone beneath the growing crater is larger and 

persists for longer.  This leads to a much larger transient crater begin formed, which then 

collapses more spectacularly.  The central uplift in this model overshoots the pre-impact 

target surface before collapsing back downward and outward.  A topographic ring feature 

forms inside, but concentric to, the main crater rim when the collapsing central uplift material 

collides with the inwardly collapsing transient crater rim.  Thus a topographic high is evident 

in the basement rocks at the same approximate location as the inner ring at Chesapeake Bay 

(~20 km radius); however, the deformation in the basement rocks exterior to this is not at all 

consistent with interpretations of the seismic data over this part of the Chesapeake Bay crater.  

Furthermore, unlike the interpreted cross-section of the Chesapeake Bay crater, the floor of 

the crater in the inner basin does not lie below the level of the basement floor in the outer 

basin.  We therefore do not favor a dynamic formation model of this type.   
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Model 4 illustrates the effect of considering a water layer above a thinner sediment layer as 

opposed to the single, thicker sedimentary layer used in Model 1.  The final crater structure is 

very similar to the simpler two-layer model.  We interpret this to mean that our combined 

model of the water layer and sedimentary sequence was not a drastic oversimplification of the 

target model.  We do not believe that the complex dynamics involved in the late stage 

infilling of the inner basin in the three-material model is very accurate, and are much more 

confident in the two-material model in this regard.  This is because iSALE does not do an 

adequate job of modeling averaged material properties in mixed cells where all three 

materials (water, sediments and basement) are present.   

 

We performed Model 5 to test whether the resurge of a water layer could drive the movement 

of sediments back into the inner basin even if the sediments were a bit stronger than Model 1 

suggests.  However, we found that even using a quite low coefficient of friction for the 

damaged sediments (0.2), the water resurge could not force back into the crater the large 

volume of sediments required to fill the inner basin.  This result gives us more confidence that 

a very weak overall strength of the sedimentary unit is indeed required to explain the 

formation of the Chesapeake Bay impact crater. 
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Chesapeake Bay Strength Models (Sediments-detail)
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Figure DR3 
 

Chesapeake Bay Damage Models (Granite Basement)
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