Zhang, X.-Z., et al., 2022, Tibetan Plateau growth linked to crustal thermal transitions since the Miocene: Geology, https://doi.org/10.1130/G49534.1

1		GSA Data Repository
2	Т	ibetan Plateau growth linked to crustal thermal transitions since the Miocene
3		
4	У	Kiu-Zheng Zhang ^{1, 2} Qiang Wang ^{1, 2*} Derek Wyman ³ Quan Ou ^{1, 4} Yue Qi ^{1, 2} Guo-Ning
5		Gou ¹ Wei Dan ^{1, 2} Ya-Nan Yang ^{1, 2}
6 7 8	¹ St Acc ² C	ate Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese ademy of Sciences, Guangzhou, 510640, P. R. China AS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
9	^{3}Sc	chool of Geosciences, The University of Sydney, NSW 2006, Australia
10 11 12	4 S Sea Coi	State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of limentary Geology, Chengdu University of Technology, Chengdu 610059, China rresponding Author: * Qiang Wang, E-mail: <u>wqiang@gig.ac.cn</u>
13		
14	Inc	cludes the following Materials
15	≻	Summary of samples and analysis used in this study
16		Text S1 Analytical methods
17		Figure S1 Field photographs and photomicrographs of the granulite xenoliths
18		Figure S2 Photomicrograph of amphibolite facies xenoliths.
19	\triangleright	Figure S3 U–Pb concordia diagrams for the zircon xenocrysts
20		Figure S4 REE patterns of zircon from granulite xenoliths.
21		Figure S5 Diagram showing the amounts of melt formed from fluid-absent
22		reactions in mafic rocks.
23		Table S1 SIMS zircon U-Pb and O isotopic results of crustal xenoliths
24	≻	Table S2 LA-ICP-MS U-Pb isotopic and SIMS O isotopic data of zircon
25		xenocrysts.
26	\triangleright	Table S3 In-situ LA-ICP-MS zircon trace element of granulite xenoliths
27	\triangleright	Table S4 Representative analyses of minerals of granulite xenoliths.
28		Table S5 Representative analyses of minerals of amphibolite facies xenoliths.

> Summary of samples and analysis used in this study

Туре	Sample	GPS Position	Host rock	Analysis
	11WL61-7	N: 34°33′21″; E: 90°32′6″		SIMS Zircon U-Pb age SIMS Zircon O isotope Zircon trace elements (ICP-SF-MS) Mineral Chemistry (EPMA) Whole-rock major elements (XRF) Phase Equilibrium
Granuhte xenoliths	11WL61-2	N: 34°32′28″; E: 90°32′24″	3.8 Ma trachytes	SIMS Zircon U-Pb age SIMS Zircon O isotope Zircon trace elements (ICP-SF-MS) Mineral Chemistry (EPMA)
Granitic xenolith	11WL61-1-2	N: 34°33′21″; E: 90°32′6″		SIMS Zircon U-Pb age SIMS Zircon O isotope
Amphibolite facies xenoliths	11GM01-20 11GM01-10 11GM01-21	N: 35°01'34" E: 92°40'46"	28 Ma syenites porphyries	Petrography Mineral Chemistry (EPMA) P–T Calculation
Zircon xenocrysts	5123-2	N: 34°25′32"; E: 89°7′39″	2.3Ma dacite	SIMS Zircon U-Pb age SIMS Zircon O isotope
	13SW16-1	N: 33°46'15" E: 90°15'14"		
	13SW20-1	N: 33°45'22" E: 90°20'16"		
	13SW02-1	N: 33°51'32" E: 90°21'59"		
Zircon xenocrysts	13SW47-1	N: 33°46'06" E: 90°15'13"	~6 Ma trachydacites	LA-ICP-MS Zircon U-Pb age SIMS Zircon O isotope
	13SW49-1	N: 33°39'33" E: 90°18'32"		
	14QW326-2	N: 33°49'32.5" E: 90°39'07.5"		
	14QW328-3	N: 33°48'43.8" E: 90°33'55.1"		

31 Text S1. Analytical methods

32 **1. Phase Equilibrium**

P-T pseudosection has been calculated for the granulite sample 11WL61-7 in the 33 NCKFMASHTO $(Na_2O-CaO-K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O-TiO_2-Fe_2O_3)$ 34 system using the software THERMOCALC, version 3.40i (Powell and Holland, 1988) 35 (updated February, 2012). The whole-rock composition of 11WL61-7 was analyzed 36 37 on fused glass beads using a Rigaku RIX 2000 X-ray fluorescence (XRF) spectrometer at the State Key Laboratory of Isotope Geochemistry, Guangzhou 38 39 Institute of Geochemistry, Chinese Academy of Sciences. Analytical uncertainties are between 1% and 5%. The input bulk composition is: $SiO_2 = 52.23$ (wt.%), $Al_2O_3 =$ 40 15.93 (wt.%), $TiO_2 = 0.83$ (wt.%), $Fe_2O_3 = 8.48$ (wt.%), MnO = 0.08 (wt.%), MgO =41 42 6.33 (wt.%), CaO = 8.15(wt.%), Na₂O = 2.49 (wt.%), K₂O = 2.05 (wt.%) and P₂O₅ = 0.20 (wt.%). These oxides were normalized in the NCKFMASHTO system by 43 assuming that P_2O_5 is present in apatite and the O (Fe₂O₃) value equals to the 44 summation of the Fe³⁺ content in each constituent mineral calculated by charge 45 balance constraints (Fe³⁺/ (Fe²⁺+ Fe³⁺) \approx 0.1). Except where H₂O is considered as a 46 compositional variable, the modelled bulk-rock water contents were adjusted 47 according to Palin et al. (2016): minimal free fluid (~1 mol.%) was present at the 48 8-kbar solidus to ensure that the solidus remained fluid-saturated over the entire P-T 49 50 range of interest. The mineral activity-composition relationships are as follows: metabasite melt, clinopyroxene and amphibole (Green et al., 2016); garnet, 51 orthopyroxene, biotite and chlorite (White et al., 2014); olivine and epidote (Holland 52 and Powell, 2011); magnetite-spinel (White et al., 2002); ilmenite-hematite (White et 53 al., 2000); plagioclase and K-feldspar (Holland and Powell, 2003); and 54 muscovite-paragonite (White et al., 2014). Pure phases included quartz, rutile, titanite 55

56 and aqueous fluid (H_2O).

57

58 **2. Zircon U-Pb age analysis**

Zircon grains were separated from fresh samples using conventional heavy liquid and magnetic techniques and then hand-picked under a binocular microscope. They were casted in the epoxy mount and polished to about half their thickness for analysis. Cathodoluminescence (CL) images of zircons were conducted at State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLaBIG GIGCAS).

65

66 **2.1 SIMS**

Zircon U-Pb analyses were conducted using the Cameca IMS 1280HR secondary ion 67 mass spectrometry (SIMS) with a spot size of 20×30 µm at the SKLaBIG GIGCAS. 68 Analytical procedures are similar to those described by Li et al. (2009). An O_2^- 69 primary ion beam with an intensity of ~10 nA was accelerated at -13kV. The aperture 70 illumination mode was used with a 200 µm primary beam mass filter aperture to 71 produce even sputtering over the entire analyzed area. The secondary ion beam optics 72 73 was optimized to achieve a mass resolution of about 5400 to separate Pb⁺ peaks from 74 isobaric interferences. Rectangular lenses were activated to increase the transmission 75 at high mass resolution. A single electron multiplier was used in ion-counting mode to collect secondary ions by switching the magnetic field following the peak jumping 76 sequence: 196 (⁹⁰Zr₂¹⁶O, matrix reference), 200 (⁹²Zr₂¹⁶O), 200.5 (background), 77 203.81 (⁹⁴Zr₂¹⁶O, for mass calibration), 203.97 (²⁰⁴Pb), 206 (²⁰⁶Pb), 207 (²⁰⁷Pb), 208 78 (²⁰⁸Pb), 209 (¹⁷⁷Hf¹⁶O₂), 238 (²³⁸U), 248 (²³²Th¹⁶O), 270 (²³⁸U¹⁶O₂), and 270.1 79 (reference mass). The integration time for these mass are1.04, 0.56, 4.16, 0.56, 6.24, 80

4.16, 6.24, 2.08, 1.04, 2.08, 2.08, 2.08, and 0.24 s, respectively. Each measurement
consisted of seven cycles, and the total analytical time per measurement was ~12
minutes.

Zircon U-Th-Pb isotopic ratios were corrected using the standard zircon Plešovice 84 (Sláma et al., 2008) based on a power low relationship between measured $^{206}Pb^{+/238}U^{+}$ 85 and ${}^{238}U^{16}O_2^{+/238}U^+$. The ${}^{207}Pb$ -based common lead correction was used to derive the 86 U-Pb ages (Age^{207c} in Table S1) with a present-day crustal composition of 87 ${}^{207}\text{Pb}/{}^{206}\text{Pb}_{\text{common}} = 0.84$ for the common Pb. A long-term uncertainty of 1.5% (1 RSD) 88 for ${}^{206}Pb/{}^{238}U$ measurements of the standard zircons was propagated to the unknowns 89 (Li et al., 2010), despite that the measured ²⁰⁶Pb/²³⁸U error in a specific session is 90 generally around 1% (1 RSD) or less. Data reduction was carried out using the 91 Isoplot/Ex v. 3.0 program (Ludwig, 2003). Uncertainties on individual analyses in the 92 data tables are reported at a 1σ level. Mean ages for pooled U/Pb and Pb/Pb analyses 93 94 are quoted with 2σ and/or 95% confidence intervals. In this study, we analyzed six 95 Qinghu grains yielding a concordia age of 160.1 ± 2.0 Ma, which is identical to the recommended value of 159.5 ± 0.2 Ma (Li et al., 2013) within analytical uncertainties. 96

97

98 **2.1 LA-ICP-MS**

99 Zircon U-Pb dating was performed using LA-ICP-MS for zircon xenocrysts contained 100 in ~6 Ma trachydacites at the Institute of Geology and Geophysics, Chinese Academy 101 of Sciences (Table S2). An Agilent 7500a quadruple (Q)–ICPMS and a Neptune 102 multi-collector (MC)–ICPMS with a 193 nm excimer ArF laser-ablation system 103 (GeoLas Plus) were used for determination of zircon U–Pb ages. The analyses were 104 conducted with a spot diameter of 40 µm with a typical ablation time of 105 approximately 30 s for 200 cycles of each measurement, an 8 Hz repetition rate, and a laser power of 100mJ/pulse. Zircon 91500 was used as the standard (Wiedenbeck et 106 al., 1995) and the standard silicate glass NIST 610 was used to optimize the machine. 107 ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ratios were calculated using the GLITTER program 108 (Jackson et al., 2004). Common Pb was corrected by ComPbCorr#3 151 (Andersen, 109 2002) for those with common²⁰⁶Pb > 1%. The weighted mean ages are quoted at the 110 95% confidence level. The age calculations and concordia plots were made using 111 Isoplot (ver 3.0) (Ludwig, 2003). 112

113

114 **3. Zircon O isotope compositions**

Zircon oxygen isotopes were measured using Cameca IMS 1280HR SIMS at 115 SKLaBIG GIGCAS. The detailed analytical procedures were similar to those 116 described by Li et al. (2009). The measured oxygen isotopic data were corrected for 117 instrumental mass fractionation (IMF) using the Penglai zircon standard ($\delta^{18}O_{VSMOW}$ 118 = 5.3 ‰) (Li et al., 2009). The internal precision of a single analysis generally was 119 better than 0.2 ‰ (1 σ) for the ¹⁸O/¹⁶O ratio. The external precision, measured by the 120 121 reproducibility of repeated analyses of the Penglai standard, is $0.10 \ \text{\%} \ (2\sigma, n = 24)$. Eight measurements of the Qinghu zircon standard during the course of this study 122 yielded a mean of $\delta^{18}O = 5.51 \pm 0.20$ ‰ (2 σ), which is consistent within analytical 123 errors with the reported value of 5.4 ± 0.2 ‰ (Li et al., 2013)(Tables S1, S2). 124

125

126 **4. Zircon Trace Element**

In situ trace element for the zircon of granulite xenoliths were measured with an
ELEMENT XR (Thermo Fisher Scientific) ICP-SF-MS coupled with a 193-nm (ArF)
Resonetics RESOlution M-50 laser ablation system in the SKLaBIG GIG CAS. Laser

130 condition was set as following: beam size, 33µm; repetition rate, 6Hz; energy density, ~4 J cm⁻². A smoothing device (The Squid, Laurin Technic) was used to smooth the 131 sample signal. Each spot analysis consisted of 20 s gas blank collection with the laser 132 off, and 30 s sample signal detection with the laser on. Si was selected as the internal 133 standard element. NIST610 was selected as the calibration standard. The oxide 134 molecular yield, indicated by the 232 Th 16 O/ 232 Th ratio, was less than 0.3%. The detailed 135 experiment procedure and data reduction strategy are described in Zhang et al. (2019). 136 NIST612 was measured as unknown samples. 30 analyses of NIST612 indicate most 137 138 elements are within 8% of the reference values and the analytical precision (2RSD) was better than 10% for most elements (Table S3). 139

140

141 **5. Mineral Chemistry**

Representative minerals in the crustal xenoliths were selected for chemical analysis by
electron probe micro-analyzer (EPMA) JEOL JXA-8800 at the SKLaBIG GIG CAS.
The operating conditions were 20 kV, 20 nA beam current, and 5 µm probe diameter.
Representative mineral analyses are listed in Tables S4 and S5. The structural
formulae have been given for fixed oxygen values and with Fe³⁺ calculated by
stoichiometric charge balance.

Figure S1 Field photographs and photomicrographs of the crustal xenoliths contained 150 151 in 3.8 Ma trachyte, from Wulanwulahu area, central Tibet. (A-B) Field photographs showing the occurrences of the granulite xenoliths. (C) Photomicrographs of mafic 152 153 granulite xenoliths 11WL61-2 (plane polarized light photomicrograph). (D) Granulite samples 11WL61-7 exhibit foliation defined by the preferred orientation of 154 mineral grains. Minor titanomagnetite was observed to occurred as parallel lamellae 155 within ilmenite. (E-F) Field photographs and photomicrographs of the granitic 156 xenoliths. Amp = amphibole, Pl = plagioclase, Bt = biotite, Opx = orthopyroxene, 157 Cpx = clinopyroxene, Ksp = K-feldspar, Qtz = quartz, Ilm = ilmenite, Tmt = 158 159 titanomagnetite

Figure S2 Photomicrograph (plane polarized light) showing the mineral textures and 161 mineral assemblage of crustal xenoliths contained in 28 Ma syenites porphyries. (A-B) 162 amphibolite (C-D) garnet amphibolite. These xenoliths have medium-grained 163 164 polygonal granoblastic texture with the assemblages of amphibole (35–50 vol. %) + plagioclase (35-40 vol. %) + biotite (5-10 vol. %) + quartz (5-7 vol. %) + ilmenite 165 (0-5 vol. %) + garnet (0-8 vol. %) + clinopyroxene (0-7 vol. %). Compared with the 166 water-poor granulite xenoliths, these amphibolite facies crustal xenoliths are rich in 167 hydrous minerals (e.g., biotite and amphibole), up to 40–60 vol. %. Amp = amphibole, 168 Pl = plagioclase, Bt = biotite, Grt = garnet, Cpx = clinopyroxene.169

Figure S3 U–Pb concordia diagrams for the zircon xenocrysts from 6–2.3 Ma lavas.
Eight samples displayed clear oscillatory zoning of magmatic origin and yielded 56
concordant U–Pb ages (from 81 analyses) of 445–8.5 Ma (Tables S2), with most (41
analyses, 73%) being of Cenozoic age.

Figure S4 Chondrite normalised REE patterns of zircon cores and metamorphic
overgrowths from granulite xenoliths contained in 3.8 Ma trachyte. Chondrite values
are from Sun and McDonough (1989).

Figure S5 Diagram showing the amounts of melt formed from fluid-absent reactions 183 184 in mafic rocks at (A) 5 kbar and (B) 10 kbar as a function of temperature and water content of the source rock (Clemens et al., 1987). These diagrams can be used to 185 estimate roughly the amount of melt produced during the thermal transition from the 186 amphibolite-facies crust of 28 Ma to the granulite-facies crust of 22.6-12.9 Ma. The 187 original H₂O-rich middle crust (~1.5 wt.% H₂O) at 28 Ma could produce as much as 188 189 25–38 vol. % melts during 22.6–12.9 Ma when the temperature rose to 880°C, which is consistent with the results of phase equilibrium (Figs. 2D). The H_2O contents (~1.5 190 wt.%) are calculated based the mineral assemblages (vol. %, Amp₄₀ Pl₃₅ Bt₁₀ Cpx₈ Grt₇) 191 192 and mineral properties (see blow, Hacker et al. 2004).

	Pl	Grt	Срх	Amp	Bt
Density (g/cm ³)	2.7	4.31	3.26	3.24	2.79
H2O (wt.%)	0	0	0	2.5	4.5

Spot #	Properties	U (ppm)	Th (ppm)	Pb (ppm)	<u>Th</u> U	²³⁸ U ²⁰⁶ Pb	±1σ (%)	²⁰⁷ Pb ²⁰⁶ Pb	±1σ (%)	Age ^{207c} (Ma)	±1σ	δ ¹⁸ Ο	1σ
					11W	L61-7: granulite	xenolith						
1	metamorphic	698	90.6	2.39	0.13	320.88	1.64	0.04832	2.83	20.0	0.3	12.16	0.09
2	metamorphic	494	52.6	1.89	0.11	280.47	2.13	0.04959	2.28	22.9	0.5	12.52	0.12
3	metamorphic	793	129	2.93	0.16	283.11	2.44	0.06150	2.13	22.3	0.5	12.18	0.11
4	metamorphic	2039	107	7.69	0.05	280.43	1.99	0.04629	1.30	23.0	0.5	12.64	0.13
5	metamorphic	723	101	2.64	0.14	300.94	2.54	0.04884	2.51	21.3	0.5	12.25	0.14
6	metamorphic	704	72.2	2.36	0.10	319.88	1.92	0.05082	3.82	20.0	0.4	11.84	0.09
7	core	938	1058	52.5	1.13	25.30	1.53	0.05317	0.60	249.2	3.8	5.94	0.12
8	rim	814	129	2.0	0.16	267.24	2.71	0.16676	5.05	20.4	0.6	12.26	0.11
					11W	L61-2: granulite	xenolith						
1	rim	2420	45.8	6.57	0.02	380.46	1.53	0.05253	1.63	16.8	0.3	9.88	0.11
2	rim	2749	47.0	5.0	0.02	490.62	1.68	0.05141	1.75	13.0	0.2	10.15	0.11
3	rim	2906	61.6	7.0	0.02	401.68	1.62	0.04950	2.33	16.0	0.3	10.15	0.12
4	rim	3057	67.3	8.07	0.02	394.58	1.61	0.04996	2.37	16.2	0.3	10.06	0.11
5	core	403	315	15.3	0.78	32.98	1.63	0.05182	1.39	192.1	3.1	6.07	0.15
6	core	415	76.8	54.0	0.18	8.66	1.52	0.06531	0.50	702.6	10.4	5.23	0.12
7	rim	1455	60.6	4.30	0.04	368.28	1.73	0.05285	1.48	17.3	0.3	10.53	0.13
8	metamorphic	2264	37.7	4.79	0.02	494.79	1.57	0.04814	1.67	13.0	0.2	9.69	0.08
9	metamorphic	1916	21.0	3.98	0.01	502.51	1.62	0.05199	1.51	12.7	0.2	10.36	0.15
		1710		0170	11W	L61-1-2: granitic	xenolith	0.001777	1.01	1217	0.12	10.00	0110
1	magmatic	22930	1501	37	0.07	666.17	2.97	0.04748	0.46	9.65	0.29	9.16	0.15
2	magmatic	5284	383	8	0.07	684.71	2.45	0.04935	1.06	9.37	0.23	9.39	0.23
3	magmatic	2906	111	4	0.04	693.70	1.51	0.04698	2.24	9.28	0.14	9.23	0.23
4	magmatic	7364	375	11	0.05	718.34	2.39	0.04790	1.10	8.95	0.21	9.23	0.19
5	magmatic	6439	403	10	0.06	683.77	1.50	0.04807	1.37	9.40	0.14	9.23	0.11
6	magmatic	5535	175	9	0.03	671.01	2.35	0.05010	1.03	9.55	0.22	9.29	0.12
7	magmatic	10670	966	16	0.09	712.34	1.59	0.04900	0.74	9.01	0.14	9.62	0.14
8	magmatic	4661	129	6	0.03	783.48	1.50	0.04765	1.18	8.21	0.12	9.23	0.16
9	magmatic	5517	158	8	0.03	754.99	1.66	0.04742	1.27	8.52	0.14	9.46	0.24

Table S1 SIMS zircon U-Pb and O isotopic results of crustal xenoliths entrained in 3.8 Ma trachytes.

10	magmatic	3586	93 5	0.03	748.21	1.54	0.0473	6 1.44	8.60	0.13	9.77	0.15
11	magmatic	6303	476 9	0.08	724.86	1.57	0.0474	0 0.99	8.87	0.14	9.03	0.16
			Zircon U-Pb:	Qinghu zircon	ı standard,	Concordia	age = 160.1	1 ± 2.0 Ma				
Sample/	[U]	[Th]	Th/U	²⁰⁷ <u>Pb</u>	$\pm \sigma$	²⁰⁶ Pb	$\pm \sigma$	0	²⁰⁷ <u>Pb</u>	+6	²⁰⁶ Pb	+6
spot #	ppm	ppm	meas	²³⁵ U	%	²³⁸ U	%	Ρ	²³⁵ U	0	²³⁸ U	-0
QH@01	1152	448	0.388	0.17079	1.59	0.0251	1.50	0.94850	160.1	2.4	159.6	2.4
QH@02	1620	741	0.457	0.17128	1.57	0.0251	1.50	0.95548	160.5	2.3	160.0	2.4
QH@03	1369	729	0.532	0.16990	1.59	0.0248	1.51	0.94717	159.3	2.3	158.0	2.4
QH@04	1229	504	0.410	0.17179	1.86	0.0252	1.54	0.82890	161.0	2.8	160.2	2.4
QH@05	966	506	0.524	0.16886	1.70	0.0245	1.56	0.91276	158.4	2.5	156.3	2.4
QH@06	1306	613	0.469	0.17662	1.70	0.0260	1.58	0.92768	165.1	2.6	165.2	2.6
		Zi	rcon oxygen iso	topes: Qinghu	ı zircon sta	ndard, mea	n of δ ¹⁸ O =	$= 5.51 \pm 0.20$	‰ (2σ)			
	QH@01		QH@02	QH@03	QH@	04	QH@05	QH	I@06	QH@07	7	QH@08
δ ¹⁸ Ο	5.47		5.47	5.71	5.39)	5.56	5	5.46	5.57		5.47
1σ	0.14		0.11	0.16	0.17	7	0.10	0	0.07	0.13		0.14

194 Note: Age^{207c} is ²⁰⁶Pb/²³⁸U age which common Pb was corrected by ²⁰⁷Pb-correction method.

Smat	Th (anal)	U	Th /I I	²⁰⁷ Pb/2	²⁰⁶ Pb	²⁰⁷ Pb/	^{/235} U	²⁰⁶ Pb/	²³⁸ U	²⁰⁷ Pb/ ²⁰⁶	Pb (Ma)	²⁰⁷ Pb/ ²³⁵	U (Ma)	²⁰⁶ Pb/ ²³⁸	U (Ma)	\$180	1-	Dict
Spot	In (ppm)	(ppm)	In/U	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	Age	1σ	Age	lσ	Age	1σ	- 0180	10	Disc
						SIMS U-P	b isotopic d	ata of zircon	xenocrysts	from 2.3 M	la dacite							
5123-2@01	3512	87	0.01	0.04719	0.00129	0.02783	0.00129	0.00428	0.00016	59.0	63.9	27.9	1.3	27.5	1.0	9.81	0.09	1%
5123-2@02	4185	86	0.00	0.04761	0.00145	0.02709	0.00158	0.00413	0.00021	79.8	70.9	27.1	1.6	26.5	1.3	9.42	0.10	2%
5123-2@03	9541	225	0.03	0.04662	0.00046	0.03453	0.00063	0.00537	0.00008	29.8	23.7	34.5	0.6	34.5	0.5	8.75	0.17	0%
5123-2@05	331	199	0.52	0.05041	0.00187	0.19601	0.00785	0.02820	0.00043	214.1	83.7	181.7	6.7	179.3	2.7	6.15	0.18	1%
5123-2@07	856	754	0.82	0.05069	0.00093	0.22492	0.00534	0.03218	0.00049	226.8	41.8	206.0	4.4	204.2	3.0	6.74	0.13	1%
5123-2@08	240	223	0.01	0.06488	0.00669	0.01255	0.00136	0.00140	0.00005	770.6	203.1	12.7	1.4	9.0	0.3	8.96	0.12	40%
5123-2@10	358	174	0.58	0.04966	0.00102	0.23706	0.00614	0.03463	0.00055	178.9	47.0	216.0	5.0	219.4	3.4	7.59	0.18	-2%
5123-2@11	208	171	0.01	0.06797	0.00872	0.00899	0.00120	0.00096	0.00003	867.7	245.4	9.1	1.2	6.2	0.2	8.32	0.14	47%
5123-2@12	3806	344	0.05	0.04680	0.00125	0.02245	0.00071	0.00348	0.00006	39.3	62.8	22.5	0.7	22.4	0.4	7.09	0.15	1%
5123-2@13	2868	480	(0.03)	0.04384	0.00094	0.02012	0.00053	0.00333	0.00005	-119.7	52.2	20.2	0.5	21.4	0.3	6.58	0.18	-6%
5123-2@14	590	20	0.00	0.05505	0.00445	0.01081	0.00091	0.00142	0.00003	414.2	171.3	10.9	0.9	9.2	0.2	11.66	0.20	19%
5123-2@15	603	557	0.81	0.15816	0.00076	8.30794	0.15137	0.38099	0.00670	2436.0	8.1	2265.2	16.6	2080.9	31.3	10.87	0.18	17%
5123-2@16	855	383	0.49	0.05018	0.00063	0.25010	0.00492	0.03615	0.00055	203.5	29.1	226.7	4.0	228.9	3.4	8.07	0.20	-1%
5123-2@17	886	110	0.01	0.05171	0.00227	0.01712	0.00081	0.00240	0.00004	272.5	97.6	17.2	0.8	15.5	0.3	6.53	0.14	11%
5123-2@18	2622	106	0.00	0.04956	0.00159	0.01466	0.00063	0.00215	0.00006	174.5	73.0	14.8	0.6	13.8	0.4	8.42	0.20	7%
5123-2@19	2406	153	0.06	0.04607	0.00156	0.01912	0.00081	0.00301	0.00008	0.0	81.2	19.2	0.8	19.4	0.5	8.16	0.12	-1%
5123-2@20	1616	272	0.03	0.04861	0.00129	0.02651	0.00086	0.00395	0.00007	129.1	61.4	26.6	0.9	25.4	0.5	6.91	0.13	4%
5123-2@21	350	143	0.02	0.05209	0.00628	0.01295	0.00162	0.00180	0.00006	289.5	254.4	13.1	1.6	11.6	0.4	6.45	0.21	13%
					L	A-ICP-MS U	-Pb isotopi	c data of zirco	on xenocrys	ts from ~6	Ma trachy	te						
13SW16-1 02	948	1490	0.64	0.06166	0.00638	0.01471	0.00130	0.00184	0.00005	662	142	15	1	11.8	0.3	7.52	0.1	27%
13SW16-1 06	493	1608	0.31	0.05901	0.00370	0.02132	0.00127	0.00271	0.00006	567	92	21	1	17.4	0.4	9.55	0.1	21%
13SW16-1 08	1718	2884	0.60	0.04606	0.00721	0.01308	0.00203	0.00206	0.00004	1	281	13	2	13.3	0.2	9.87	0.1	-2%
13SW16-1 09	2231	1493	1.49	0.04736	0.00456	0.01068	0.00087	0.00175	0.00004	67	133	10.8	0.9	11.3	0.3	8.97	0.13	-4%
13SW16-1 13	2216	2244	0.99	0.04733	0.00608	0.01196	0.00151	0.00183	0.00004	66	256	12	2	11.8	0.3	8.84	0.1	2%
13SW16-1 14	504	4683	0.11	0.04682	0.00182	0.02349	0.00089	0.00364	0.00005	40	57	23.6	0.9	23.4	0.3	8.78	0.09	1%

Table S2 LA-ICP-MS U-Pb isotopic and SIMS O isotopic data of zircon xenocrysts in 6.0–2.3 Ma lavas.

13SW16-1 20	330	1275	0.26	0.05550	0.00482	0.01195	0.00086	0.00172	0.00004	433	115	12.1	0.9	11.1	0.3	7.92	0.09	9%
13SW20-1 03	724	1105	0.66	0.04605	0.00250	0.01074	0.00053	0.00169	0.00004		118	10.8	0.5	10.9	0.2			-1%
13SW20-1 04	718	7500	0.10	0.05286	0.00252	0.01023	0.00046	0.00140	0.00002	323	111	10.3	0.5	9	0.1			14%
13SW20-1 07	2069	3079	0.67	0.04361	0.00231	0.01807	0.00098	0.00302	0.00006	-91	81	18.2	1	19.5	0.4			-7%
13SW20-1 09	504	661	0.76	0.05522	0.01238	0.01386	0.00305	0.00182	0.00008	421	436	14	3	11.7	0.5			20%
13SW20-1 11	728	4677	0.16	0.05296	0.00511	0.00822	0.00076	0.00113	0.00003	327	221	8.3	0.8	7.3	0.2			14%
13SW20-1 14	1844	6572	0.28	0.04849	0.00181	0.01212	0.00044	0.00181	0.00002	123	59	12.2	0.4	11.7	0.2			4%
13SW20-1 16	589	1689	0.35	0.05097	0.00462	0.01184	0.00107	0.00170	0.00004	240	162	12	1	11	0.3			9%
13SW20-1 17	463	918	0.50	0.05890	0.00777	0.01651	0.00213	0.00203	0.00006	564	299	17	2	13.1	0.4			30%
13SW20-1 18	238	3078	0.08	0.05073	0.00358	0.01624	0.00103	0.00237	0.00005	228	103	16	1	15.2	0.4			5%
13SW20-1 19	1040	1712	0.61	0.05813	0.00847	0.01090	0.00155	0.00136	0.00005	535	327	11	2	8.8	0.3			25%
13SW02-1 02	601	1101	0.55	0.05337	0.00452	0.01195	0.00093	0.00177	0.00004	345	130	12.1	0.9	11.4	0.3	9.91	0.08	6%
13SW02-1 07	431	1254	0.34	0.06226	0.00354	0.01681	0.00089	0.00206	0.00005	683	75	16.9	0.9	13.2	0.3	9.32	0.06	28%
13SW02-1 08	136	3542	0.04	0.04882	0.00230	0.01131	0.00052	0.00169	0.00003	139	72	11.4	0.5	10.9	0.2			5%
13SW02-1 11	345	2501	0.14	0.06108	0.00636	0.02098	0.00209	0.00249	0.00008	642	233	21	2	16	0.5			31%
13SW02-1 12	298	2240	0.13	0.04736	0.00313	0.01300	0.00085	0.00204	0.00004	67	107	13.1	0.9	13.2	0.3			-1%
13SW02-1 13	255	3229	0.08	0.24988	0.03570	7.89246	2.91661	0.10445	0.04514	3184	324	2219	333	640	263			247%
13SW02-1 14	1261	2077	0.61	0.06079	0.00354	0.01497	0.00080	0.00184	0.00004	632	81	15.1	0.8	11.9	0.2			27%
13SW02-1 16	791	4028	0.20	0.04415	0.00301	0.01207	0.00077	0.00201	0.00004	-63	100	12.2	0.8	12.9	0.3			-5%
13SW02-1 19	574	732	0.78	0.04605	0.00287	0.01370	0.00078	0.00216	0.00005		137	13.8	0.8	13.9	0.4			-1%
13SW02-1 20	258	3501	0.07	0.05703	0.00555	0.02020	0.00181	0.00257	0.00010	493	221	20	2	16.5	0.6			21%
13SW47-1 01	1270	3783	0.34	0.04612	0.00249	0.01066	0.00055	0.00168	0.00003	4	117	10.8	0.6	10.8	0.2			0%
13SW47-1 02	682	765	0.89	0.04606	0.00470	0.00869	0.00081	0.00137	0.00006	1	209	8.8	0.8	8.8	0.4			0%
13SW47-1 04	768	913	0.84	0.05380	0.00499	0.01289	0.00106	0.00184	0.00005	363	136	13	1	11.8	0.3			10%
13SW47-1 10	1572	5679	0.28	0.05896	0.00387	0.01880	0.00122	0.00254	0.00016	566	63	19	1	16	1			19%
13SW47-1 11	657	2809	0.23	0.04858	0.00297	0.01098	0.00067	0.00168	0.00004	128	97	11.1	0.7	10.8	0.2			3%
13SW47-1 13	449	686	0.65	0.04606	0.00591	0.01028	0.00127	0.00162	0.00005	1	241	10	1	10.4	0.3			-4%
13SW47-1 14	158	1544	0.10	0.05439	0.00373	0.42411	0.02428	0.05655	0.00214	387	159	359	17	355	13			1%
13SW47-1 17	1395	1689	0.83	0.04766	0.00306	0.00997	0.00060	0.00157	0.00005	82	82	10.1	0.6	10.1	0.3			0%
13SW49-1 04	1672	5338	0.31	0.05133	0.00258	0.01034	0.00054	0.00147	0.00003	256	77	10.4	0.5	9.5	0.2			9%

13SW49-1 06	147	1101	0.13	0.06391	0.00520	0.07453	0.00468	0.00953	0.00056	739	59	73	4	61	4			20%
13SW49-1 11	91	763	0.12	0.05093	0.00202	0.06658	0.00318	0.00953	0.00027	238	60	65	3	61	2	8.15	0.09	7%
13SW49-1 17	516	840	0.61	0.07876	0.00984	0.02231	0.00223	0.00235	0.00010	1166	134	22	2	15.1	0.6	8.93	0.08	46%
13SW49-1 19	109073	26977	4.04	0.04605	0.00332	0.00836	0.00059	0.00132	0.00002		160	8.5	0.6	8.5	0.1			0%
14QW326-2-08	277	304	0.91	0.05428	0.01154	0.01620	0.00337	0.00216	0.00009	383	414	16	3	13.9	0.6			15%
14QW326-2-10	164	356	0.46	0.05624	0.00102	0.55488	0.00973	0.07151	0.00067	462	23	448	6	445	4			1%
14QW326-2-11	1451	1260	1.15	0.05203	0.00581	0.01212	0.00133	0.00169	0.00004	287	256	12	1	10.9	0.2			10%
14QW326-2-12	264	445	0.59	0.05164	0.00549	0.30874	0.03268	0.04336	0.00046	270	244	273	25	274	3			0%
14QW326-2-14	256	355	0.72	0.04961	0.00342	0.11667	0.00785	0.01706	0.00025	177	157	112	7	109	2			3%
14QW328-3-01	122	2428	0.05	0.04379	0.00114	0.01076	0.00026	0.00179	0.00002	-81	36	10.9	0.3	11.5	0.1			-5%
14QW328-3-02	258	534	0.48	0.04919	0.00071	0.20512	0.00399	0.03016	0.00043	157	22	189	3	192	3	6.57	0.06	-2%
14QW328-3-03	350	146	2.40	0.05002	0.00605	0.04239	0.00503	0.00615	0.00014	196	266	42	5	39.5	0.9	7.38	0.09	6%
14QW328-3-04	49.5	72	0.69	0.05462	0.00147	0.42706	0.01064	0.05696	0.00063	397	36	361	8	357	4	6.06	0.1	1%
14QW328-3-05	62	119	0.52	0.06593	0.00961	0.01715	0.00241	0.00189	0.00007	804	324	17	2	12.2	0.5	9.13	0.05	39%
14QW328-3-06	189	145	1.30	0.05159	0.00818	0.01416	0.00220	0.00199	0.00006	267	324	14	2	12.8	0.4	9.83	0.09	9%
14QW328-3-07	135	142	0.95	0.04743	0.00180	0.11334	0.00402	0.01751	0.00021	71	58	109	4	112	1			-3%
14QW328-3-08	30.9	55.7	0.55	0.04847	0.00189	0.27272	0.01096	0.04082	0.00056	122	68	245	9	258	3			-5%
14QW328-3-09	99	86	1.16	0.04605	0.00662	0.15197	0.02175	0.02394	0.00032		262	144	19	152	2			-5%
14QW328-3-11	27.9	14.7	1.90	0.15203	0.02154	0.12538	0.01357	0.00763	0.00047	2369	104	120	12	49	3	6.72	0.07	145%
14QW328-3-13	173	212	0.82	0.05294	0.00129	0.25912	0.00689	0.03545	0.00045	326	37	234	6	225	3			4%
14QW328-3-14	35.3	94	0.37	0.06962	0.00307	0.73244	0.02989	0.07630	0.00127	917	93	558	18	474	8			18%
14QW328-3-18	497	2255	0.22	0.04822	0.00138	0.01900	0.00052	0.00286	0.00002	110	67	19.1	0.5	18.4	0.2			4%
14QW328-3-19	2079	43654	0.05	0.04682	0.00140	0.01082	0.00030	0.00167	0.00002	40	43	10.9	0.3	10.8	0.1			1%
14QW328-3-21	1827	2994	0.61	0.05023	0.00125	0.21256	0.00534	0.03060	0.00041	206	34	196	4	194	3			1%
14QW328-3-22	5870	6001	0.98	0.04638	0.00449	0.01347	0.00128	0.00211	0.00004	17	207	14	1	13.6	0.2			3%
14QW328-3-23	7569	5165	1.47	0.04897	0.00206	0.03853	0.00155	0.00572	0.00007	146	70	38	2	36.8	0.5			3%
14QW328-3-24	6659	5051	1.32	0.06260	0.00350	0.02419	0.00130	0.00288	0.00006	695	80	24	1	18.5	0.4			30%
14QW328-3-25	2893	3100	0.93	0.04606	0.00966	0.00986	0.00205	0.00155	0.00004	1	350	10	2	10	0.3			0%
14QW328-3-26	3265	4843	0.67	0.05571	0.00470	0.01216	0.00089	0.00169	0.00004	441	124	12.3	0.9	10.9	0.2	8.18	0.09	13%

				Q	inghu zirc	on standar	d for SIM	IS, Conco	rdia age =	158.6 ± 2	.1 Ma					
a	Th	U		²⁰⁷ Pb/ ²	²⁰⁶ Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ l	Pb (Ma)	²⁰⁷ Pb/ ²³⁵ U	U (Ma)	²⁰⁶ Pb/ ²³⁸ U	J (Ma)	
Spot	ppm	ppm	Th/U	Ratio	1σ %	Ratio	1σ %	Ratio	1σ %	Age	1σ	Age	1σ	Age	1σ	- Disc
Qinghu@1	397	979	0.41	0.04917	1.36	0.16803	2.04	0.0248	1.52	155.8	31.5	157.7	3.0	157.8	2.4	-0.08%
Qinghu@2	700	1986	0.35	0.04921	0.94	0.17212	1.77	0.0254	1.50	158.0	21.8	161.3	2.6	161.5	2.4	-0.14%
Qinghu@3	309	666	0.46	0.04969	1.63	0.17218	2.22	0.0251	1.51	180.4	37.5	161.3	3.3	160.0	2.4	0.81%
Qinghu@4	813	1354	0.60	0.05050	1.69	0.16908	2.32	0.0245	1.51	198.3	40.4	158.6	3.4	156.0	2.3	1.70%
Qinghu@5	618	1112	0.56	0.04956	1.70	0.17020	2.35	0.0249	1.63	174.2	39.1	159.6	3.5	158.6	2.6	0.62%
				9150	0 zircon st	andard for	r LA-ICP-	MS, Conc	ordia age	= 1062.4	± 5.8 Ma					
Enot	Th	U	тьлі	²⁰⁷ Pb/ ²	²⁰⁶ Pb	²⁰⁷ Pb	/ ²³⁵ U	²⁰⁶ Pb	0/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ l	Pb (Ma)	²⁰⁷ Pb/ ²³⁵ U	U (Ma)	²⁰⁶ Pb/ ²³⁸ U	J (Ma)	- Dice
Spor	ppm	ррт	11/0	Ratio	1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	- Disc
91500std	24.6	95.1	0.26	0.07561	0.00242	1.86493	0.05848	0.17876	0.00275	1085	63.7	1069	20.7	1060	15.0	2.33%
91500std	19.8	81.2	0.24	0.07415	0.00244	1.83547	0.05873	0.17958	0.00276	1056	66.7	1058	21.0	1065	15.1	-0.85%
91500std	33.1	118	0.28	0.07538	0.00213	1.86087	0.05383	0.17875	0.00248	1080	62.0	1067	19.1	1060	13.5	1.84%
91500std	26.7	103	0.26	0.07438	0.00220	1.83953	0.05382	0.17959	0.00258	1054	59.7	1060	19.2	1065	14.1	-1.03%
91500std	33.2	115	0.29	0.07527	0.00215	1.86056	0.05230	0.17876	0.00254	1076	57.4	1067	18.6	1060	13.9	1.48%
91500std	35.0	128	0.27	0.07449	0.00220	1.83984	0.04947	0.17958	0.00254	1055	63.9	1060	17.7	1065	13.9	-0.94%
91500std	17.3	75.5	0.23	0.07441	0.00281	1.84695	0.06847	0.17915	0.00289	1054	75.9	1062	24.4	1062	15.8	-0.81%
91500std	23.7	87.2	0.27	0.07535	0.00290	1.85345	0.06613	0.17919	0.00289	1080	77.8	1065	23.5	1063	15.8	1.61%
91500std	33.6	121	0.28	0.07571	0.00227	1.87396	0.05264	0.17925	0.00255	1087	59.3	1072	18.6	1063	13.9	2.28%
91500std	28.8	105	0.27	0.07405	0.00250	1.82644	0.05793	0.17909	0.00268	1043	68.5	1055	20.8	1062	14.7	-1.83%
91500std	34.2	121	0.28	0.07429	0.00212	1.82953	0.05164	0.17924	0.00223	1050	57.4	1056	18.5	1063	12.2	-1.21%
91500std	34.7	120	0.29	0.07547	0.00192	1.87087	0.05007	0.17910	0.00214	1081	51.1	1071	17.7	1062	11.7	1.80%
91500std	27.1	99	0.27	0.07319	0.00207	1.80752	0.05034	0.17921	0.00261	1020	57.4	1048	18.2	1063	14.3	-3.98%
91500std	34.2	120	0.28	0.07474	0.00196	1.84973	0.05231	0.17904	0.00248	1061	56.5	1063	18.6	1062	13.5	-0.06%
91500std	33.4	121	0.28	0.07353	0.00211	1.81240	0.05170	0.17907	0.00273	1028	59.3	1050	18.7	1062	14.9	-3.21%
91500std	19.5	76.9	0.25	0.07537	0.00238	1.85986	0.05873	0.17922	0.00291	1080	63.7	1067	20.9	1063	15.9	1.59%
91500std	22.1	84.3	0.26	0.07439	0.00222	1.84054	0.05691	0.17912	0.00283	1054	65.7	1060	20.3	1062	15.5	-0.80%
91500std	32.3	114	0.28	0.07499	0.00207	1.84996	0.05018	0.17916	0.00248	1133	55.6	1063	17.9	1062	13.5	6.68%

91500std	21.4	83.9	0.25	0.07477	0.00229	1.85044	0.05771	0.17918	0.00269	1062	62.2	1064	20.6	1062	14.7	-0.04%
91500std	27.9	102	0.27	0.07686	0.00233	1.89516	0.05712	0.17902	0.00292	1118	59.7	1079	20.0	1062	16.0	5.27%
91500std	27.2	99	0.28	0.07290	0.00215	1.80524	0.05145	0.17932	0.00241	1013	60.0	1047	18.6	1063	13.2	-4.73%
91500std	29.2	105	0.28	0.07379	0.00219	1.82374	0.05412	0.17918	0.00258	1035	59.3	1054	19.5	1063	14.1	-2.57%
91500std	31.0	113	0.27	0.07597	0.00202	1.87666	0.04990	0.17916	0.00266	1094	53.2	1073	17.6	1062	14.6	3.02%
91500std	29.4	104	0.28	0.07471	0.00222	1.84071	0.05239	0.17924	0.00282	1061	60.3	1060	18.7	1063	15.4	-0.16%
91500std	28.1	97	0.29	0.07505	0.00223	1.85969	0.05580	0.17910	0.00267	1069	59.3	1067	19.8	1062	14.6	0.69%

Note:

1. If ${}^{206}Pb/{}^{238}U$ age <1000, Disc (Discordance) = $({}^{207}Pb/{}^{235}U$ age)/ $({}^{206}Pb/{}^{238}U$ age)-1; If ${}^{206}Pb/{}^{238}U$ age >1000, Disc = $({}^{207}Pb/{}^{206}Pb$ age)/ $({}^{206}Pb/{}^{238}U$ age)-1. 2. Results described in this study exclude analyses with >10% discordance.

Spot#	Introductions	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ti	T/°C
							11WL61	-7: granul	ite xenolit	h							
1	metamorphic	0.04	5.36	0.03	0.62	2.59	0.40	21.57	7.24	74.02	21.75	88.46	17.91	157.22	26.64	9.52	791.18
3	metamorphic	0.32	6.75	0.11	1.24	4.15	0.43	29.06	9.88	102.16	31.14	130.66	26.41	230.01	41.48	8.81	783.30
4	metamorphic	0.02	15.87	0.05	1.16	2.14	0.14	12.78	4.29	53.43	19.04	87.21	17.50	157.04	26.41	14.88	839.00
5	metamorphic	0.02	6.70	0.03	0.66	3.77	0.45	28.68	9.46	96.94	29.25	119.77	24.61	216.37	37.57	6.14	748.06
6	metamorphic	0.10	6.84	0.05	1.13	3.71	0.47	29.16	9.48	99.07	28.95	122.20	24.78	215.78	38.48	6.13	747.91
7	core	0.38	29.89	0.21	2.80	5.40	2.25	30.41	9.57	117.47	43.62	205.69	46.05	435.99	80.58	7.71	770.00
8	rim	0.10	6.84	0.05	1.13	3.71	0.47	29.16	9.48	99.07	28.95	122.20	24.78	215.78	38.48	6.13	747.91
							11WL61	-2: granul	ite xenolit	h							
1	rim	3.48	8.49	0.80	3.86	1.98	0.16	12.58	4.64	48.25	13.93	48.63	6.90	44.13	7.41	7.10	761.95
2	rim	0.10	1.51	0.07	0.58	1.56	0.17	13.00	4.65	44.44	11.28	33.98	5.26	36.03	5.20	5.92	744.63
3	rim	5.44	9.16	0.98	4.89	4.95	0.32	27.46	7.41	56.19	10.33	24.96	3.06	18.88	2.89	6.68	756.08
5	core	0.33	9.97	0.16	1.08	2.06	0.30	12.59	5.01	69.50	28.94	161.20	40.03	427.90	77.83	302.70	1322.67
6	core	0.19	3.06	0.16	2.19	4.30	0.13	23.07	7.59	84.21	30.69	147.34	31.87	302.22	58.10	36.59	949.68
7	rim	0.09	3.27	0.09	0.56	1.27	0.28	7.92	3.20	45.26	19.78	113.27	29.91	324.36	66.29	13.69	829.75
8	metamorphic	0.62	2.08	0.21	1.09	2.37	0.25	17.89	4.97	36.31	6.90	18.40	2.60	17.78	3.11	20.66	876.97
9	metamorphic	0.14	1.98	0.08	0.76	1.76	0.19	11.10	3.22	25.15	7.74	43.49	11.44	138.60	30.52	12.09	816.24
						S	tandard:	NIST610 a	and NIST	612							
NIST610		435.83	449.73	446.37	431.02	455.51	454.35	478.35	441.29	446.15	456.99	461.33	443.48	461.09	443.70	453.92	
NIST610		441.96	459.26	456.50	450.14	467.80	462.75	487.97	456.35	455.00	461.96	469.58	450.35	466.48	453.19	470.28	
NIST610		443.70	452.99	447.72	433.03	456.55	447.60	453.50	438.83	441.65	453.35	458.24	436.29	451.14	444.92	452.30	
NIST610		443.65	454.10	449.50	426.63	454.65	448.66	447.88	436.55	435.27	449.07	451.64	435.59	450.56	436.17	451.02	
NIST610		437.83	453.23	447.58	425.80	448.24	444.04	433.81	430.82	430.19	449.54	457.34	432.73	448.36	437.95	447.63	
NIST610		433.55	446.18	441.27	420.14	441.50	436.26	425.81	428.25	425.12	436.37	443.54	424.14	436.29	426.67	441.65	
NIST610		436.16	448.76	443.11	420.85	442.61	435.85	433.80	428.34	424.56	435.18	445.46	423.20	437.12	432.29	440.64	
NIST610		442.43	456.59	448.40	427.97	445.54	437.51	430.55	431.34	430.27	441.82	447.18	427.07	443.90	434.19	452.70	
NIST612		34.43	36.60	36.46	33.15	36.57	34.23	37.05	36.25	34.61	36.30	36.71	35.70	37.21	35.66	45.71	

Table S3 In-situ LA-ICP-MS trace element (ppm) results for the zircon of granulite xenoliths entrained in 3.8 Ma trachytes.

NIST612	35.00	37.18	36.99	34.71	35.78	34.12	37.42	35.11	34.72	36.38	36.46	35.33	38.13	35.28	46.41
NIST612	34.58	36.75	35.99	33.22	35.59	33.65	34.41	34.45	34.01	35.21	36.20	34.31	35.59	35.00	41.78
NIST612	35.69	37.63	36.89	33.81	36.07	34.04	34.25	34.68	33.64	35.84	36.03	34.36	36.60	35.14	37.10
NIST612	35.11	37.66	36.75	34.51	35.10	33.68	34.35	34.97	32.72	35.84	36.34	34.23	35.46	34.32	39.53
NIST612	35.24	36.94	36.79	33.55	36.33	34.06	36.44	34.88	33.80	36.16	36.46	34.58	36.93	34.54	36.87
NIST612	35.72	37.24	37.03	34.86	37.01	34.30	34.79	35.84	34.37	36.23	36.95	34.95	35.51	34.97	38.44
NIST612	35.30	37.15	36.24	34.21	36.04	34.67	35.93	35.42	33.96	35.95	36.36	35.15	36.38	34.81	35.29

201 Note:

202 1. The in-situ trace element analysis spot correspond to those of SIMS zircon U-Pb dating (Table S1).

2. In order to obtain high quality data, the zircon grains were polished slightly prior to the test, and some smaller grains (e.g., 11WL61-7@2, 11WL61-2@4) were 203

204 accidentally polished out without obtaining trace data.

3. Temperatures calculated by Ti-in-zircon geothermometer assuming $\alpha_{SiO2} = 1$, $\alpha_{TiO2} = 0.6$ (Ferry and Watson, 2007; Watson et al., 2006) 4. Ti content of 11WL61-2@5 is very high, up to 302.70 ppm, and most probably as a result of inclusions in the zircons. 205

11WL61-7 (mafic granulite)										11WL61-2 (mafic granulite)									
Mineral	Pl	Pl	Opx	Opx	Срх	Срх	Bt	Amp	Ilm	Tmt	Ilm	Tmt	Pl	Pl	Opx	Opx	Срх	Bt	Ilm
SiO ₂	54.35	53.67	51.76	51.95	52.36	51.95	36.71	42.07	0.1	0.44	0.02	0.55	56.34	54.04	51.45	52.08	50.41	36.72	0.04
TiO_2	\	\	0.05	0.12	0.25	0.19	4.77	2.36	46.82	12.65	46.8	12.68	0.01	\	0.23	0.14	0.3	6.87	49.32
Al_2O_3	27.97	28.54	3.32	3.23	2.53	2.76	14.8	12.07	0.6	9.1	0.24	5.76	26.81	28.98	5	3.51	2.82	13.93	0.18
FeO	0.37	0.53	22.29	22.84	10.93	10.77	13.01	14.84	46.65	70.45	49.1	71.98	0.08	0.44	19.95	20.81	10.76	13.14	47.25
MnO	0.04	0.02	0.09	0.09	0.04	0.03	0.05	0.10	0.34	0.42	0.53	0.33	0.01	0.01	0.91	1.01	0.31	\	1.12
MgO	0.04	0.03	21.45	21.97	13.42	13.20	15.33	10.61	3.99	4.65	1.35	4.42	0.01	0.06	22.29	22.09	13.28	14.69	1.19
CaO	11.56	12.75	0.39	0.38	20.60	20.32	0.08	11.82	0.07	0.02	\	0.09	9.37	12.08	0.81	0.74	21.02	0.16	\
Na ₂ O	4.38	4.26	0.13	0.02	0.48	0.55	0.63	1.72	0.07	0.04	0.28	0.08	6.28	4.3	0.07	0.12	0.73	1.22	0.1
K ₂ O	0.67	0.49	\	\	0.01	0.01	9.96	1.67	\	0.07	0.01	0.16	0.95	0.77	\	0.01	\	8.35	0.02
F	\	\	\	\	\	\	\	\	\	\	\	\	0.01	\	\	\	\	2.56	\
Cl	0.01	\	0.01	\	0.00	0.01	0.01	0.03	\	\	0.03	\	0.03	0.01	\	0.01	\	0.20	0.02
Total	99.39	100.28	99.48	100.59	100.61	99.78	95.34	97.27	98.64	97.84	98.35	96.04	99.9	100.68	100.71	100.51	99.63	97.83	99.23
Oxygens	8	8	6	6	6	6	11	23	3	4	3	4	8	8	6	6	6	11	3
Si	2.482	2.441	1.932	1.922	1.948	1.947	2.736	6.335	0.003	0.017	0.001	0.023	2.547	2.437	1.886	1.921	1.908	2.654	0.001
Ti	\	\	0.001	0.003	0.007	0.005	0.268	0.267	0.902	0.372	0.921	0.391	\	\	0.006	0.004	0.009	0.373	0.952
Al	1.505	1.530	0.146	0.141	0.111	0.122	1.3	2.142	0.018	0.42	0.007	0.278	1.429	1.541	0.216	0.153	0.126	1.187	0.005
Fe ³⁺	\	\	0.000	0.000	0.021	0.020	0.135	0.265	0.257	1.085	0.242	1.208	\	\	0.008	0.01	0.14	0.455	0.132
Fe ²⁺	\	\	0.698	0.706	0.318	0.317	0.675	1.603	0.743	1.219	0.833	1.256	\	\	0.603	0.631	0.196	0.339	0.882
Mn	\	\	0.003	0.003	0.001	0.001	0.003	0.012	0.007	0.014	0.012	0.012	\	\	0.028	0.031	0.01	0.000	0.024
Mg	\	\	1.181	1.212	0.744	0.737	1.703	2.381	0.152	0.271	0.053	0.27	\	\	1.218	1.214	0.749	1.583	0.046
Ca	0.566	0.602	0.016	0.015	0.821	0.816	0.006	1.906	0.002	0.001	\	0.004	0.454	0.584	0.032	0.029	0.852	0.012	
Na	0.388	0.386	0.010	0.001	0.034	0.040	0.091	0.503	0.003	0.003	0.014	0.006	0.551	0.376	0.005	0.009	0.053	0.171	0.005
K	0.039	0.028	0.000	0.000	0.000	0.001	0.947	0.32	\	0.004	\	0.008	0.055	0.044	\	\	\	0.770	0.001
An (Pl)	57.0	59.2	\	\	\	\	\	\	\	\	\	\	42.8	58.2	\	\	\	\	\
Mg#(Opx)	\	١	62.8	63.2	\	\	\	\	\	\	\	\	\	\	66.6	65.4	69.0	66.6	\
Titanomagnetite-Ilmenite thermometer (Sauerzapf et al., 2008): 829-884 °C																			

Table S4 Representative analyses of minerals of granulite xenoliths entrained in 3.8 Ma trachytes.

 $208 \qquad \text{Note: An = Ca/ (Ca + Na + K) \times 100\%; Mg\# (Opx) = Mg/ (Mg + Fe^{2+}) \times 100\%}$

		11GM01	-20 (garn	et amphibo	olite)	11GM01-10 (garnet amphibolite)						11GM01-21 (amphibolite)		
mineral	grt	cpx	amp	pl	pl	cpx	pl	amp	grt	cpx	bt	amp	pl	bt
SiO ₂	38.23	51.45	42.33	53.02	51.59	51.32	52.94	42.98	38.32	51.37	36.04	43.13	59.32	36.36
TiO ₂	0.1	0.19	2.01	\	\	0.16	\	2.19	0.02	0.12	3.74	2.27	0.03	5.12
Al ₂ O ₃	21.52	1.98	12.14	29.17	29.76	1.66	28.5	12.57	21.71	1.76	16.81	12.24	25.37	14.6
FeO	25.68	10.18	14.88	0.11	0.03	9.58	0.13	13.16	26.74	9.43	16.68	14.46	\	18.01
MnO	0.86	0.22	0.09	0.04	\	0.16	0.03	0.1	1.4	0.12	0.14	0.07	\	0.12
MgO	6.33	12.34	10.67	0.01	0.01	12.6	\	10.97	6.32	12.43	12.61	10.17	0.01	12.14
CaO	6.85	23.17	12.08	12.31	13.48	24	11.89	12.33	6.3	23.89	\	12.29	7.13	\
Na ₂ O	0.03	0.73	1.68	5.13	4.43	0.73	5.23	1.62	\	0.7	0.61	1.89	7.98	0.65
K ₂ O	0.01	0.09	1.6	0.29	0.24	\	0.32	1.61	\	0.03	9.3	1.57	0.28	8.99
F	\	\	\	0.01	\	\	\	\	\	\	\	\	b.d.	\
Cl	\	0.01	0.02	\	0.01	0.01	\	0.07	0.01	0.01	0.12	0.08	0.01	0.02
Total	99.61	100.36	97.51	100.08	99.56	100.22	99.04	97.61	100.82	99.86	96.05	98.17	100.11	96
Oxygens	12	6	23	8	8	6	8	23	12	6	11	23	8	11
Si	2.982	1.937	6.356	2.409	2.362	1.935	2.428	6.386	2.966	1.941	2.698	6.413	2.65	2.742
Ti	0.006	0.005	0.227	\	\	0.004	\	0.245	0.001	0.003	0.211	0.254	0.001	0.291
Al	1.978	0.088	2.147	1.562	1.606	0.074	1.541	2.202	1.981	0.078	1.483	2.144	1.335	1.298
Fe ³⁺	0.029	0.126	0.261	\	\	0.151		0.354	0.041	0.128	0.17	0.327	\	0.203
Fe ²⁺	1.646	0.191	1.608	0.004	0.001	0.148	0.005	1.281	1.689	0.167	0.875	1.471	\	0.933
Mn	0.057	0.007	0.012	0.002	\	0.005	0.001	0.013	0.092	0.004	0.009	0.008	\	0.008
Mg	0.736	0.693	2.389	\	\	0.708	\	2.43	0.73	0.7	1.408	2.255	\	1.365
Ca	0.573	0.935	1.943	0.599	0.661	0.969	0.584	1.963	0.523	0.967	\	1.957	0.341	\
Na	0.005	0.053	0.489	0.452	0.393	0.054	0.465	0.468	\	0.051	0.089	0.545	0.691	0.094
K	\	0.004	0.307	0.017	0.014	\	0.019	0.305	\	0.001	0.889	0.299	0.016	0.865
Grt-Cpx Thermometer (Ravna, 2000)	664 °C					620 °C								
Amp-Pl Thermometer (Holland and Blundy, 1994)	730 °C					640 °C						627 °C		

210 Table S5 Representative analyses of minerals of amphibolite facies xenoliths contained in 28 Myr syenites porphyries.

Grt-Cpx-Pl-Qtz Barometer (Eckert et al., 1991)	10 kbar	9 kbar	\
Grt-Cpx-Pl-Qtz Barometer (Newton and Perkins, 1982)	8 kbar	7 kbar	1

211 **References**

- Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb:
 Chemical Geology, v. 192, p. 59–79.
- Eckert, J.O., Newton, R.C., Kleppa, O.J., 1991, The H of reaction and recalibration of
 garnet–pyroxene–plagioclase–quartz geobarometers in the CMAS system by solution
 calorimetry: American Mineralogist, v. 76, n. 1–2, p. 148–160.
- Ferry J.M., Watson E.B., 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-inrutile thermometers: Contrib Mineral Petrol, v. 154, p. 429–437.
- Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M., 2016,
 Activity–composition relations for the calculation of partial melting equilibria for metabasic
 rocks: Journal of Metamorphic Geology, v. 34, p. 845–869.
- Hacker, B. R., and Abers G. A., Subduction Factory 3, 2004, An Excel worksheet and macro for
 calculating the densities, seismic wave speeds, and H₂O contents of minerals and rocks at
 pressure and temperature: Geochemistry Geophysics Geosystems, v. 5, Q01005.
- Holland, T., & Blundy, J., 1994, Non-ideal interactions in calcic amphiboles and their bearing on
 amphibole-plagioclase thermometry: Contributions to mineralogy and petrology, v. 116, n. 4,
 p. 433-447.
- Holland, T.J.B. & Powell, R., 2003, Activity–composition relations for phases in petrological
 calculations: an asymmetric multicomponent formulation: Contributions to Mineralogy and
 Petrology, v. 145, p. 492–501.
- Holland, T.J.B. & Powell, R., 2011, An improved and extended internally consistent
 thermodynamic dataset for phases of petrological interest, involving a new equation of state
 for solids: Journal of Metamorphic Geology, v. 29, p. 333–383.
- Jackson, S.E., Pearson, N.J., Belousova, E., Griffin, W.L., 2004, The application of laser
 ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U– Pb
 geochronology: Chemical Geology, v. 211, p. 47–69.
- Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H., Chamberlain, K. R., Wan, D.
 F., Guo, C. H., Wang, X. C., and Tao, H., 2010, Penglai Zircon Megacrysts: A Potential New
 Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age:
 Geostandards and Geoanalytical Research, v. 34, no. 2, p. 117–134.
- Li, X., Tang, G., Gong, B., Yang, Y., Hou, K., Hu, Z., Li, Q., Liu, Y., and Li, W., 2013, Qinghu
 zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes:
 Chinese Science Bulletin, v. 58, p. 4647–4654.
- Li, X.H., Liu, Y., Li, Q.L., Guo, C.H., and Chamberlain, K.R., 2009, Precise determination of
 Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization:
 Geochemistry, Geophysics, Geosystems, v. 10, Q04010.
- Ludwig, K. R., 2003, User's Manual for Isoplot/Ex Version 3.00. In: Ludwig, K. R., ed., A
 Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special

249 Publication: Berkeley, p. 41–70.

- Newton, R.C., Perkins, D., 1982, Thermodynamic calibration of geobarometers based on the
 assemblages garnet–plagioclase–orthopyroxene (clinopyroxene) –quartz. American
 Mineralogist: v. 67, no. 2, p. 203–222.
- 253 Q., 2017. Ou, Middle Eocene-Late Miocene (42-6 Ma) igneous rocks in 254 Gemuchaka-Chibuzhangcuo area, Qiangtang Block (central Tibet Plateau): Petrogenesis and 255 insights for deep geodynamics, [Ph.D. thesis]: University of Chinese Academy of Sciences, 256 380 p (in Chinese with English abstract).
- Palin, R.M., White, R.W., Green, E.C.R., Diener, J.F.A., Powell, R., Holland, T.J.B., 2016,
 Highgrade metamorphism and partial melting of basic and intermediate rocks: J. Metamorph.
 Geol., v. 34, p. 871–892.
- Powell, R. & Holland, T.J.B., 1988, An internally consistent dataset with uncertainties and
 correlations: 3. Applications to geobarometry, worked examples and a computer program:
 Journal of Metamorphic Geology, v. 6, p. 173–204.
- Ravna, E.K., 2000, Distribution of Fe²⁺ and Mg between coexisting garnet and hornblende in
 synthetic and natural systems: an empirical calibration of the garnet–hornblende Fe–Mg
 geothermometer: Lithos, v. 53, no. 3–4, p. 265–277.
- Sauerzapf, U., Lattard, D., Burchard, M., Engelmann, R., 2008, The titanomagnetite-ilmenite
 equilibrium: new experimental data and thermo-oxybarometric application to the
 crystallization of basic to intermediate rocks: J. Petrol., v. 49, 1161e1185
- Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S.
 A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N.,
 Whitehouse, M. J., 2008, Plešovice zircon a new natural reference material for U-Pb and Hf
 isotopic microanalysis: Chemical Geology, v. 249, p. 1–35.
- Sun, S.S., McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts:
 implications for mantle composition and processes: Geological Society, London, Special
 Publications, p. 313–345.
- Watson, E.B., Wark, D.A., Thomas, J., 2006, Crystallization thermometers for zircon and rutile:
 Contrib. Mineral. Petrol., v. 151, n. 4, p. 413–433.
- White, R.W., Powell, R. & Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich
 metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral
 equilibria calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃: Journal
 of Metamorphic Geology, v. 20, p. 41–55.
- White, R.W., Powell, R. & Johnson, T.E., 2014, The effect of Mn on mineral stability in
 metapelites revisited: new a-x relations for manganese-bearing minerals: Journal of
 Metamorphic Geology, v. 32, p. 809–828.
- White, R.W., Powell, R., Holland, T.J.B. & Worley, B.A., 2000, The effect of TiO₂ and Fe₂O₃ on
 metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria

- calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃: Journal of
 Metamorphic Geology, v. 18, p. 497–511.
- White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E. & Green, E.C.R., 2014, New mineral activity–composition relations for thermodynamic calculations in metapelitic systems:
 Journal of Metamorphic Geology, v. 32, p. 261–286.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick,
 J.C., Spiegel, W., 1995, Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element
 and REE analyses: Geostandards and Geoanalytical Research, v. 19, p. 1–23.
- Zhang, L., Ren, Z.-Y., Xia, X.-P., Yang, Q., Hong, L.-B., & Wu, D., 2019, In situ determination of
 trace elements in melt inclusions using laser ablation-inductively coupled plasma-sector
- 297 field-mass spectrometry: Rapid Communications in Mass Spectrometry, v. 33, p. 361–370.