Xu, W., Zhang, D., Yan, M., Zhang, W., Zhang, Z., Xu, Z., Zhang, Y., Song, C., and Fang, X., 2024, Moderate magnitude clockwise rotation of the Yunlong Basin: Implications for synchronous Eocene rotation of the southeastern Tibetan Plateau: GSA Bulletin, https://doi.org/10.1130/B37395.1.

Supplemental Material

Figure S1. E/I inclination shallowing corrections of the ChRM directions from the studied Yunlong Formation.

Table S1. Cretaceous–Oligocene paleomagnetic results from the Lanping-Simao terrane and the eastern Qiangtang terrane.

Table S2. Paleomagnetic rotation results in the Gonjo, Mangkang, Lanping, Yunlong, and Mengla area.

1	Supporting Material for
2 3	Moderate magnitude clockwise rotation of the Yunlong Basin: implications for synchronous Eocene rotation of the Southeastern Tibetan Plateau
4 5	Wanlong Xu ^{1,2+} , Dawen Zhang ³⁺ , Maodu Yan ^{1,2*} , Weilin Zhang ¹ , Zhenbei Zhang ^{1,2} , Zunbo Xu ^{1,2} , Yuwei Zhang ^{1,2} , Chunhui Song ⁴ , Xiaomin Fang ^{1,2}
6 7	¹ State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
8	² University of Chinese Academy of Sciences, Beijing 100049, China
9	³ School of Tourism and Resources Environment, Zaozhuang University, Zaozhuang 277160, China
10	⁴ School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
11	
12	
13	Contents of this file
14	
15	Tables S1 to S2
16	
17	Introduction
18	This supporting information includes one figure and two tables that present the

- 19 previous published paleomagnetic results and our new result. Figure S1 shows the E/I
- 20 inclination shallowing correction results. Table S1 is a collection of Cretaceous-
- 21 Oligocene paleomagnetic results in the Lanping-Simao Terrane and the eastern
- 22 Qiangtang Terrane. Table S2 is the rotational magnitude of different localities around
- 23 the Eastern Himalaya Syntaxis.

24

(a) E/I shallowing correction of all ChRM directions (332 data points)

(b) E/I shallowing correction after removing disperse ChRM directions (308 data points)

25 26

Figure S1. E/I inclination shallowing corrections of the ChRM directions from the studied Yunlong Formation. (a) The mean inclination of 332 ChRM directions increases from 35.36° to 39.24° (confidence interval: $36-50^{\circ}$); (b) The mean inclination of 308 ChRM directions increases from 33.6° to 39.22° (confidence interval: $35-43^{\circ}$) after removing 24 dispersed data points. Given the present latitude of 25.9° N, with respect to the Eurasian reference, it suggests $\sim 530 \pm 280$ km northward movements of basin since 79-61 Ma.

Location	Latitude (°/N)	Longitude (°/E)	Formation	N(n)	Age	Dec (s)	Inc (s)	α95	strike	95% CI	δstrike	δD	Reliability criteria	Reference
Lanping-Si	imao Terra	ne												
Yunlong	25.8	99.4	Nanxin	20	K1 (126-100 Ma)	40.2	49.9	3.9	146.1	5.5	0	40.2	1,2,4,5	Sato et al. (1999)
Yunlong	25.7	99.4	Nanxin+Hutousi	9	K1 (126-100 Ma)	34.0	52.4	7.3	146.1	5.5	0	34.0	1,2,3,4,5	Yang et al.(2001a)
Yongping	25.5	99.5	Jingxing	12	K1 (126-100 Ma)	42.0	51.1	15.7	150.1	6.2	4.0	38.0	1,2,4,5	Funahara et al. (1993)
Weishan	25.2	100.2	Nanxin+Hutousi	18	K1 (126-100 Ma)	64.3	48.5	4.7	169.7	9.2	23.6	40.7	1,2,3,4,5	Tong et al. (2014)
Jingdong	24.5	100.8	Nanxin	13	K1 (126-100 Ma)	8.3	48.8	7.7	152.3	4.0	6.2	2.1	1,2,4,5	Tanaka et al. (2008)
Zhenyuan	24.0	101.1	Nanxin	7	K1 (126-100 Ma)	61.8	46.1	8.1	172.1	5.7	26.0	35.8	1,2,4,5	Tanaka et al. (2008)
Zhenyuan	23.94	101.24	Mangang	8	K1 (126-100 Ma)	52.4	45.5	6.3	172.1	5.7	26.0	26.4	1,2,3,4,5	Zhang et al. (2012)
Jinggu	23.5	100.4	Mangang	47	K1 (126-100 Ma)	77.0	43.0	2.9	190.2	3.8	44.1	32.9	1,2,3,4,5	Gao et al. (2015)
Puer	23.0	101.0	Nanxin+Jingxing	25	K1 (126-100 Ma)	59.9	45.2	5.1	156.7	3.1	10.6	49.3	1,2,3,4,5	Sato et al. (2007)
Puer	22.74	101.11	Mangang	14	K1 (126-100 Ma)	46.2	46.6	5.6	156.7	3.1	10.6	35.6	1,2,3,4,5	Zhang et al. (2012)
Zhengwan	22.8	100.9	Nanxin	11	K1 (126-100 Ma)	51.8	47.9	6.9	156.1	3.1	10.0	41.8	1,2,4,5,6	Kondo et al. (2012)
Mengla	21.5	101.7	Mangang&Wushahe	14	K1 (126-100 Ma)	46.9	42.2	7.7	164.1	9.5	18.0	28.9	1,2,3,4,5	Tong et al. (2013)
Mengla	21.4	101.6	Nanxin&Jingxing	13	K1 (126-100 Ma)	51.2	46.4	5.6	164.1	9.5	18.0	33.2	1,2,4,5	Tanaka et al. (2008)
Dadugang	22.4	101.0	Nanxin	12	K1 (126-100 Ma)	64.1	48.1	7.3	144.1	5.6	-2.0	66.1	1,2,4,5	Kondo et al. (2012)
Menglun	21.9	101.2	Mangang&Wushahe	19	K1 (126-100 Ma)	46.2	45.9	11.0	113.9	9.8	-32.0	78.4	1,2,3,4,5	Tong et al. (2013)
Yunlong	25.8	99.4	Yunlong	34	75-61 Ma	56.0	34.3	2.7	146.1	5.5	0	56.0	1,2,3,5,6	This study
Lanping	26.0	99.4	Baoxiangsi&Denghei	9	E (56-34 Ma)	86.1	39.8	11.2	191.5	6.3	45.4	40.7	1,2,4,5	Sato et al. (2001)
Lanping	26.0	99.4	Baoxiangsi	12	E (56-34 Ma)	84.5	39.4	9.6	191.5	6.3	45.4	39.1	1,2,3,4,5	Yang et al. (2020)
Mengla	21.5	101.7	Xiaoyakou	11	E (56-34 Ma)	51.7	33.4	8.7	164.1	9.5	18.0	33.7	1,2,3,4,5,6	Yang et al. (2001b)
Mengla	21.5	101.7	Datangwan	17	E-O (56-23 Ma)	41.8	23.8	5.8	164.1	9.5	18.0	23.8	1,2,3,4,5	Tong et al. (2013)

Table S1. Cretaceous-Oligocene paleomagnetic results from the Lanping-Simao Terrane and the eastern Qiangtang Terrane

Yunlong	25.7	99.4	Jingxing	(23)	K1	59.7	41.0	11.9	146.1	5.5			1,5,6	Yang et al. (2001a)
Wuyin	25.1	100.1	Jingxing	6	K1	15.4	44.8	4.6	154.9	11.0			1,3,4,5	Tong et al. (2014)
Zhenyuan	24.0	101.1	Nanxin	4	K1	324.2	-49.4	6.4	172.1	5.7			1,4,5	Tanaka et al. (2008)
Jinggu	23.5	100.7	Mengla	(32)	E-O	84.7	38.9	7.6	190.2	3.8			1,2,5	Chen et al. (1995)
Jinggu	23.5	100.8	Mengla	6	ЕЗ-О	73.1	39.9	11.8	190.2	3.8			1,2,5	Yang et al. (2001b)
Jinggu	23.5	100.8	Mengyejing	(35)	Р	23.9	51.6	7.8	190.2	3.8			1,2,5	Chen et al. (1995)
Jinggu	23.5	100.7	Mengyejing	12	Р	36.1	31.5	8.4	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.5	100.7	Lower Denghei	12	E	35.2	35.7	6.5	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.5	100.7	Upper Denghei	18	E	53.0	33.6	4.3	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.5	100.7	Lower Mengla	11	E-O	38.4	37.3	9.7	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.5	100.7	Middle Mengla	17	E-O	38.6	33.0	5.7	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.5	100.7	Upper Mengla	14	E-O	50.8	31.8	5.8	190.2	3.8			Remag	Li et al. (2017)
Jinggu	23.4	100.9	Mangang	8	K1	79.4	43.3	9.1	190.2	3.8			1,2,5	Huang et al. (1993)
Jinggu	23.4	100.6	Mangang	7	K1	295.8	-36.0	6.3	190.2	3.8			1,4,5	Chen et al. (1995)
Jinggu	23.4	100.4	Jingxing	(10)	K1	84.4	39.6	17.8	190.2	3.8			1,5	Chen et al. (1995)
Menglun	21.9	101.2	Mankuanhe	6	K2	33.2	30.9	8.2	113.9	9.8			1,3,4,5	Tong et al. (2013)
Mengban	21.8	101.6	Mengyejing& Xiaoyakou	6	P+E	43.5	2.0	13.4	158.4	12.0			1,3,5	Tong et al. (2013)
Mengban	21.8	101.6	Mankuanhe& Mangang	4	K1	50.5	31.0	6.4	158.4	12.0			1,3,4,5	Tong et al. (2013)
Mengla	21.6	101.4	Mangang	10	K1	60.8	37.8	7.6	167.7	9.5			1,2,5	Huang et al. (1993)
Yunlong (mean)	25.7	99.4	Nanxin+Hutousi	29	K1 (126-100 Ma)	37.6	51.1	3.6	146.1	5.5	0	34.0	1,2,3,4,5	Yang et al.(2001a)
Lanping-Sim	nao (mean)				K1	36.3	47.2	2.8						
Lanping-Sim	ao (mean)				Е	37.7	37.6	7.1						

Eastern Qia	ingtang Tei	rrane										
Mangkang	29.7	98.4	lawula	20	36.4-33.4 Ma	62.2	47.6	5.5	168.4	6.6	1,2,3,4,5	Xu et al., (2024)
Gonjo	31.0	98.2	Gonjo&Ranmugou	27	67-52 Ma	50.1	26.6	2.7	143.1	5.3	1,2,3,4,5,6	Li et al., (2020)
Gonjo	31.0	98.2	Ranmugou	11	48-41 Ma	32.8	24.5	4.0	143.1	5.3	1,2,3,4,5,6	Li et al., (2020)
Mangkang	29.7	98.6	Laoran	5 (15)	Κ	48	56	8.8	168.4	6.6	5	Otofuji et al. (1990)

Note: N(n): number of sampling sites(specimens); Dec(s): declinations after tilt-correction; Inc(s): inclinations after tilt-correction; α_{95} : radius of the circle of 95% confidence of the paleomagnetic directions; strikes: mean directions of the tectonic lines; 95% CI: 95% confidence interval of the strikes; δ strike: differences between the strikes and the reference strike (146.1°); δ D: declinations after subtracting δ strike; K1: Early Cretaceous; K2: Late Cretaceous; P: Paleocene; E: Eocene; O: Oligocene. Data reliability criteria are referred to Meert et al. (2020). The data in italic are excluded to further analyses due to low reliability.

Namo	Location (ON/QE)		Middle Age	N	0		р	\$D	Defenence	
Ivanie		Age (Ma)	(Ma)	1	Lat. (°N)	Lon. (°E)	A95	К	OK	Kelerence
Gonjo	31/98.2	67-52	59.5	27	41.2	196.8	2.7	37.5	5.7	Li et al. (2020)
Gonjo	31/98.2	48-41	44.5	11	55.9	213.3	3.1	23.9	11.0	Li et al. (2020)
Mangkang	29.7/98.6	36.4-33.4	34.9	20	36.4	173.1	4.8	53.0	8.0	Xu et al. (2024)
Lanping	26/99.4	45-34	39.5	12	14.3	171.2	10.0	74.2	11.7	Yang et al. (2020)
Yunlong	25.8/99.4	79-61	70.0	31	38.1	185.0	2.3	45.2	5.1	This study
Yunlong	25.7/99.4	126-100	113.4	9	59.6	167.4	9.2	23.3	10.6	Yang et al. (2001a)
Yunlong	25.7/99.4	126-100	113.4	20	54.4	171.9	4.4	31.0	7.2	Sato et al. (1999)

Table S2. Paleomagnetic rotation results in the Gonjo, Mangkang, Lanping, Yunlong and Mengla area

Note: N: number of sampling sites; Lat. and Lon.: latitudes, longitudes of the paleomagnetic poles; A₉₅: radius of the circle of 95% confidence of the paleomagnetic poles; R: rotations with respected to Eurasian reference poles; δR : errors of rotations. Rotations are calculated by the online application www.APWP-online.org (Vaes et al., 2023)

Reference

- Chen, H., Dobson, J., Heller, F., and Hao, J., 1995, Paleomagnetic Evidence for Clockwise Rotation of the Simao Region since the Cretaceous - a Consequence of India-Asia Collision: Earth and Planetary Science Letters, v. 134, no. 1-2, p. 203-217, http://doi.org/10.1016/0012-821X(95)00118-V.
- Funahara, S., Nishiwaki, N., Murata, F., Otofuji, Y., and Wang, Y. Z., 1993, Clockwise Rotation of the Red River Fault Inferred from Paleomagnetic Study of Cretaceous Rocks in the Shan-Thai-Malay Block of Western Yunnan, China: Earth and Planetary Science Letters, v. 117, no. 1-2, p. 29-42, http://doi.org/10.1016/0012-821x(93)90115-P.
- Gao, L., Yang, Z., Tong, Y., Wang, H., and An, C., 2015, New paleomagnetic studies of Cretaceous and Miocene rocks from Jinggu, western Yunnan, China: Evidence for internal deformation of the Lanping–Simao Terrane: Journal of Geodynamics, v. 89, p. 39-59, http://doi.org/10.1016/j.jog.2015.06.004.
- Huang, K., and Opdyke, N. D., 1993, Paleomagnetic results from Cretaceous and Jurassic rocks of South and Southwest Yunnan: evidence for large clockwise rotations in the Indochina and Shan-Thai-Malay terranes: Earth and Planetary Science Letters, v. 177, no. 3-4, p. 507-524, http://doi.org/10.1016/0012-821x(93)90100-n.
- Kondo, K., Mu, C., Yamamoto, T., Zaman, H., Miura, D., Yokoyama, M., et al., 2012, Oroclinal origin of the Simao Arc in the Shan-Thai Block inferred from the Cretaceous palaeomagnetic data: Geophysical Journal International, v. 190, no. 1, p. 201-216, http://doi.org/10.1111/j.1365-246X.2012.05467.x.
- Li, S., van Hinsbergen, D. J. J., Najman, Y., Liu-Zeng, J., Deng, C., and Zhu, R., 2020, Does pulsed Tibetan deformation correlate with Indian plate motion changes? Earth and Planetary Science Letters, v. 536, no. 116144, http://doi.org/10.1016/j.epsl.2020.116144.
- Li, S., Yang, Z., Deng, C., He, H., Qin, H., Sun, L., et al., 2017, Clockwise rotations recorded in redbeds from the Jinggu Basin of northwestern Indochina: Geological Society of America Bulletin, v. 129, no. 9-10, p. 1100-1122, http://doi.org/10.1130/B31637.1.
- Otofuji, Y., Inoue, Y., Funahara, S., Murata, F., and Zheng, X., 1990, Paleomagnetic study of eastern Tibet-deformation of the Three Rivers region: Geophysical Journal International, v. 103, p. 85-94, http://doi.org/10.1111/j.1365-246X.1990.tb01754.x.
- Sato, K., Liu, Y., Wang, Y., Yokoyama, M., Yoshioka, S., Yang, Z., et al., 2007, Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China: Evidence of internal deformation of the Indochina block: Earth and Planetary Science Letters, v. 258, no. 1-2, p. 1-15, http://doi.org/10.1016/j.epsl.2007.02.043.
- Sato, K., Liu, Y., Zhu, Z., Yang, Z., and Otofuji, Y., 1999, Paleomagnetic study of middle Cretaceous rocks from Yunlong, western Yunnan, China: evidence of southward displacement of Indochina: Earth and Planetary Science Letters, v. 165, no. 1, p. 1-15, http://doi.org/10.1016/S0012-821x(98)00257-X.
- Sato, K., Liu, Y., Zhu, Z., Yang, Z., and Otofuji, Y., 2001, Tertiary paleomagnetic data from northwestern Yunnan, China: further evidence for large clockwise rotation of the Indochina block and its tectonic implications: Earth and Planetary Science Letters, v. 185, no. 1, p. 185-198, http://doi.org/10.1016/S0012-821X(00)00377-0.
- Tanaka, K., Mu, C., Sato, K., Takemoto, K., Miura, D., Liu, Y., et al., 2008, Tectonic deformation around the eastern Himalayan syntaxis: constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block: Geophysical Journal International, v. 175, no. 2, p. 713-728,

http://doi.org/10.1111/j.1365-246X.2008.03885.x.

- Tong, Y., Yang, Z., Wang, H., Zhang, X., An, C., Xu, Y., and Zhao, Y., 2014, The Creatceous paleomagnetic results from the central part of the Simao Terrane in the southwest part of China and its tectonic implications: Chinese Journal of Geophysics 57, 179-198 (in Chinese with English abstract).
- Tong, Y., Yang, Z., Zheng, L., Xu, Y., Wang, H., Gao, L., et al., 2013, Internal crustal deformation in the northern part of Shan-Thai Block: New evidence from paleomagnetic results of Cretaceous and Paleogene redbeds: Tectonophysics, v. 608, p. 1138-1158, http://doi.org/10.1016/j.tecto.2013.06.031.
- Vaes, B., van Hinsbergen, D.J.J., and Paridaens, J., 2023, APWP-online.org: a global reference database and open-source tools for calculating apparent polar wander paths and relative paleomagnetic displacements: Submitted to Tektonika, Under review. http://doi.org/10.31223/X5WD44.
- Xu, W., et al., 2024, 50° Post-Eocene clockwise rotation of Mangkang and its implications for the oroclinal bending of the southeastern Tibetan Plateau: Gondwana Research, v. 129, no. 23-25, p. 23-35, https://doi.org/10.1016/j.gr.2023.12.004.
- Yang, X., Sun, X., Wang, H., Wang, C., Pei, J., and Yang, Z., 2022, The contributing factor of differential crustal deformation of the Lanping-Simao terrane in the southeastern edge of the Xizang (Tibetan) Plateau since late Eocene: Geological Review, v. 69, p. 853-873 (in Chinese with English abstract).
- Yang, Z., Yin, J., Sun, Z., Otofuji, Y., and Sato, K., 2001a, Discrepant Cretaceous paleomagnetic poles between Eastern China and Indochina: a consequence of the extrusion of Indochina: Tectonophysics, v. 334, no. 2, p. 101-113, http://doi.org/10.1016/S0040-1951(01)00061-0.
- Yang, Z., Sun, Z., Ma, X., Yin, J., and Otofuji, Y., 2001b, Palaeomagnetic study of the early Teriary on both sides of the Red River Fault and its geological implications: Acta Geologica Sinica v. 75, p. 35-44 (in Chinese with English abstract).
- Zhang, H., Tong, Y., Wang, H., and Yang, Z., 2012, Early Cretaceous Paleomagnetic Results of the Simao Area in the Indochina Block and Its Tectonic Implications: Acta Geologica Sinica v. 86, p. 923-939 (in Chinese with English abstract).